AoPS Community

Iran TST 2016

www.artofproblemsolving.com/community/c299037
by v_Enhance, ABCDE, va2010, 62861, MRF2017, alinazarboland

Test 1 Day 1

1 Let m and n be positive integers such that $m>n$. Define $x_{k}=\frac{m+k}{n+k}$ for $k=1,2, \ldots, n+1$. Prove that if all the numbers $x_{1}, x_{2}, \ldots, x_{n+1}$ are integers, then $x_{1} x_{2} \ldots x_{n+1}-1$ is divisible by an odd prime.

2 For a finite set A of positive integers, a partition of A into two disjoint nonempty subsets A_{1} and A_{2} is good if the least common multiple of the elements in A_{1} is equal to the greatest common divisor of the elements in A_{2}. Determine the minimum value of n such that there exists a set of n positive integers with exactly 2015 good partitions.

3 Let $A B C D$ be a convex quadrilateral, and let P, Q, R, and S be points on the sides $A B, B C, C D$, and $D A$, respectively. Let the line segment $P R$ and $Q S$ meet at O. Suppose that each of the quadrilaterals $A P O S, B Q O P, C R O Q$, and $D S O R$ has an incircle. Prove that the lines $A C, P Q$, and $R S$ are either concurrent or parallel to each other.

Test 1 Day 2
4 Let n be a fixed positive integer. Find the maximum possible value of

$$
\sum_{1 \leq r<s \leq 2 n}(s-r-n) x_{r} x_{s}
$$

where $-1 \leq x_{i} \leq 1$ for all $i=1, \cdots, 2 n$.
5 Let $A B C$ be a triangle with $\angle C=90^{\circ}$, and let H be the foot of the altitude from C. A point D is chosen inside the triangle $C B H$ so that $C H$ bisects $A D$. Let P be the intersection point of the lines $B D$ and $C H$. Let ω be the semicircle with diameter $B D$ that meets the segment $C B$ at an interior point. A line through P is tangent to ω at Q. Prove that the lines $C Q$ and $A D$ meet on ω.

6 In a company of people some pairs are enemies. A group of people is called unsociable if the number of members in the group is odd and at least 3 , and it is possible to arrange all its members around a round table so that every two neighbors are enemies. Given that there are at most 2015 unsociable groups, prove that it is possible to partition the company into 11 parts so that no two enemies are in the same part.

Proposed by Russia

Test 2 Day 1
1 Let $A B C$ be an acute triangle and let M be the midpoint of $A C$. A circle ω passing through B and M meets the sides $A B$ and $B C$ at points P and Q respectively. Let T be the point such that $B P T Q$ is a parallelogram. Suppose that T lies on the circumcircle of $A B C$. Determine all possible values of $\frac{B T}{B M}$.

2 Let a, b, c, d be positive real numbers such that $\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}+\frac{1}{d+1}=2$. Prove that

$$
\sum_{c y c} \sqrt{\frac{a^{2}+1}{2}} \geq\left(3 . \sum_{c y c} \sqrt{a}\right)-8
$$

$3 \quad$ Let n be a positive integer. Two players A and B play a game in which they take turns choosing positive integers $k \leq n$. The rules of the game are:
(i) A player cannot choose a number that has been chosen by either player on any previous turn.
(ii) A player cannot choose a number consecutive to any of those the player has already chosen on any previous turn.
(iii) The game is a draw if all numbers have been chosen; otherwise the player who cannot choose a number anymore loses the game.
The player A takes the first turn. Determine the outcome of the game, assuming that both players use optimal strategies.

Proposed by Finland
Test 2 Day 2
4 Let $A B C$ be a triangle with $C A \neq C B$. Let D, F, and G be the midpoints of the sides $A B, A C$, and $B C$ respectively. A circle Γ passing through C and tangent to $A B$ at D meets the segments $A F$ and $B G$ at H and I, respectively. The points H^{\prime} and I^{\prime} are symmetric to H and I about F and G, respectively. The line $H^{\prime} I^{\prime}$ meets $C D$ and $F G$ at Q and M, respectively. The line $C M$ meets Γ again at P. Prove that $C Q=Q P$.

Proposed by El Salvador
$5 \quad$ Let P and P^{\prime} be two unequal regular n-gons and A and A^{\prime} two points inside P and P^{\prime}, respectively.Suppose $\left\{d_{1}, d_{2}, \cdots d_{n}\right\}$ are the distances from A to the vertices of P and $\left\{d_{1}^{\prime}, d_{2}^{\prime}, \cdots d_{n}^{\prime}\right\}$ are defines similarly for P^{\prime}, A^{\prime}. Is it possible for $\left\{d_{1}^{\prime}, d_{2}^{\prime}, \cdots d_{n}^{\prime}\right\}$ to be a permutation of $\left\{d_{1}, d_{2}, \cdots d_{n}\right\}$?
$6 \quad$ Let $\mathbb{Z}_{>0}$ denote the set of positive integers. For any positive integer k, a function $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ is called $[\mathrm{i}] k$-good $[/ \mathrm{i}]$ if $\operatorname{gcd}(f(m)+n, f(n)+m) \leq k$ for all $m \neq n$. Find all k such that there exists a k-good function.

Proposed by James Rickards, Canada

Test 3 Day 1

1 A real function has been assigned to every cell of an $n \times n$ table. Prove that a function can be assigned to each row and each column of this table such that the function assigned to each cell is equivalent to the combination of functions assigned to the row and the column containing it.

2 Let $A B C$ be an arbitrary triangle and O is the circumcenter of $\triangle A B C$. Points X, Y lie on $A B, A C$, respectively such that the reflection of $B C$ WRT $X Y$ is tangent to circumcircle of $\triangle A X Y$. Prove that the circumcircle of triangle $A X Y$ is tangent to circumcircle of triangle $B O C$.

3 Let $p \neq 13$ be a prime number of the form $8 k+5$ such that 39 is a quadratic non-residue modulo p. Prove that the equation

$$
x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+x_{4}^{4} \equiv 0 \quad(\bmod p)
$$

has a solution in integers such that $p \nmid x_{1} x_{2} x_{3} x_{4}$.

Test 3 Day 2

4 Suppose that a sequence a_{1}, a_{2}, \ldots of positive real numbers satisfies

$$
a_{k+1} \geq \frac{k a_{k}}{a_{k}^{2}+(k-1)}
$$

for every positive integer k. Prove that $a_{1}+a_{2}+\ldots+a_{n} \geq n$ for every $n \geq 2$.
5 Let $A D, B F, C E$ be altitudes of triangle $A B C . Q$ is a point on $E F$ such that $Q F=D E$ and F is between $E, Q . P$ is a point on $E F$ such that $E P=D F$ and E is between P, F.Perpendicular bisector of $D Q$ intersect with $A B$ at X and perpendicular bisector of $D P$ intersect with $A C$ at Y. Prove that midpoint of $B C$ lies on $X Y$.

6 Suppose that a council consists of five members and that decisions in this council are made according to a method based on the positive or negative vote of its members. The method used by this council has the following two properties:

- Ascension:If the presumptive final decision is favorable and one of the opposing members changes his/her vote, the final decision will still be favorable. • Symmetry: If all of the members change their vote, the final decision will change too.
Prove that the council uses a weighted decision-making method ; that is, nonnegative weights $\omega_{1}, \omega_{2}, \cdots, \omega_{5}$ can be assigned to members of the council such that the final decision is favorable if and only if sum of the weights of those in favor is greater than sum of the weights of the rest.

Remark. The statement isn't true at all if you replace 5 with arbitrary n. In fact, finding a counter example for $n=6$, was appeared in the same year's Iran MO 2nd round P6 (https: //artofproblemsolving.com/community/c6h1459567p8417532)

