Art of Problem Solving

AoPS Community

2022 International Zhautykov Olympiad

International Zhautykov Olympiad 2022

www.artofproblemsolving.com/community/c2992870
by mathematics2004, oVlad

1 Non-zero polynomials $P(x), Q(x)$, and $R(x)$ with real coefficients satisfy the identities

$$
P(x)+Q(x)+R(x)=P(Q(x))+Q(R(x))+R(P(x))=0 .
$$

Prove that the degrees of the three polynomials are all even.
2 A ten-level 2-tree is drawn in the plane: a vertex A_{1} is marked, it is connected by segments with two vertices B_{1} and B_{2}, each of B_{1} and B_{2} is connected by segments with two of the four vertices $C_{1}, C_{2}, C_{3}, C_{4}$ (each C_{i} is connected with one B_{j} exactly); and so on, up to 512 vertices J_{1}, \ldots, J_{512}. Each of the vertices J_{1}, \ldots, J_{512} is coloured blue or golden. Consider all permutations f of the vertices of this tree, such that (i) if X and Y are connected with a segment, then so are $f(X)$ and $f(Y)$, and (ii) if X is coloured, then $f(X)$ has the same colour. Find the maximum M such that there are at least M permutations with these properties, regardless of the colouring.

3 In parallelogram $A B C D$ with acute angle A a point N is chosen on the segment $A D$, and a point M on the segment $C N$ so that $A B=B M=C M$. Point K is the reflection of N in line $M D$. The line $M K$ meets the segment $A D$ at point L. Let P be the common point of the circumcircles of $A M D$ and $C N K$ such that A and P share the same side of the line $M K$. Prove that $\angle C P M=\angle D P L$.

4 In triangle $A B C$, a point M is the midpoint of $A B$, and a point I is the incentre. Point A_{1} is the reflection of A in $B I$, and B_{1} is the reflection of B in $A I$. Let N be the midpoint of $A_{1} B_{1}$. Prove that $I N>I M$.

5 A polynomial $f(x)$ with real coefficients of degree greater than 1 is given. Prove that there are infinitely many positive integers which cannot be represented in the form

$$
f(n+1)+f(n+2)+\cdots+f(n+k)
$$

where n and k are positive integers.
6 Do there exist two bounded sequences a_{1}, a_{2}, \ldots and b_{1}, b_{2}, \ldots such that for each positive integers n and $m>n$ at least one of the two inequalities $\left|a_{m}-a_{n}\right|>1 / \sqrt{n}$, and $\left|b_{m}-b_{n}\right|>1 / \sqrt{n}$ holds?

