AoPS Community

Czech And Slovak Mathematical Olympiad, Round III, Category A 1954

www.artofproblemsolving.com/community/c2994407
by byk7

1 Solve the equation

$$
a x^{2}+2(a-1) x+a-5=0
$$

in real numbers with respect to (real) parametr a.
2 Let a, b complex numbers. Show that if the roots of the equation $z^{2}+a z+b=0$ and 0 form a triangle with the right angle at the origin, then $a^{2}=2 b \neq 0$. Also determine whether the opposite implication holds.

3 Show that

$$
\log _{2} \pi+\log _{4} \pi<\frac{5}{2}
$$

4 Consider a cube $A B C D A^{\prime} B^{\prime} C^{\prime} D$ (with $A B \perp A A^{\prime}\left\|B B^{\prime}\right\| C C^{\prime} \| D D$). Let X be an inner point of the segment $A B$ and denote Y the intersection of the edge $A D$ and the plane $B^{\prime} D^{\prime} X$.
(a) Let $M=B^{\prime} Y \cap D^{\prime} X$. Find the locus of all $M \mathrm{~s}$.
(b) Determine whether there is a quadrilateral $B^{\prime} D^{\prime} Y X$ such that $B^{\prime} M=\alpha \cdot M Y, D^{\prime} X=\beta \cdot M X$ for $\alpha, \beta \in\{1 / 2,2\}$.

