

AoPS Community

www.artofproblemsolving.com/community/c2995570 by Demetres

TST-1 TST-1

1 Find all integer values of *x* for which the value of the expression

 $x^2 + 6x + 33$

is a perfect square.

2 Let ABCD be a square. Let E, Z be points on the sides AB, CD of the square respectively, such that $DE \parallel BZ$. Assume that the triangles $\triangle EAD, \triangle ZCB$ and the parallelogram BEDZ have the same area.

If the distance between the parallel lines DE and BZ is equal to 1, determine the area of the square.

3 If x, y are real numbers with $x + y \ge 0$, determine the minimum value of the expression

 $K = x^5 + y^5 - x^4y - xy^4 + x^2 + 4x + 7$

For which values of x, y does K take its minimum value?

Consider the digits 1, 2, 3, 4, 5, 6, 7.

(a) Determine the number of seven-digit numbers with distinct digits that can be constructed using the digits above.

(b) If we place all of these seven-digit numbers in increasing order, find the seven-digit number which appears in the 2022^{th} position.

TST-2 TST-2

4

1 Determine all real numbers $x \in \mathbb{R}$ for which

$$\left\lfloor \frac{x}{2} \right\rfloor + \left\lfloor \frac{x}{3} \right\rfloor = x - 2022.$$

The notation $\lfloor z \rfloor$, for $z \in \mathbb{R}$, denotes the largest integer which is less than or equal to z. For example:

$$\lfloor 3.98 \rfloor = 3$$
 and $\lfloor 0.14 \rfloor = 0.$

AoPS Community

2 Determine all pairs of prime numbers (p, q) which satisfy the equation

$$p^3 + q^3 + 1 = p^2 q^2$$

- **3** Let ABC be an acute-angled triangle, and let D, E and K be the midpoints of its sides AB, ACand BC respectively. Let O be the circumcentre of triangle ABC, and let M be the foot of the perpendicular from A on the line BC. From the midpoint P of OM we draw a line parallel to AM, which meets the lines DE and OA at the points T and Z respectively. Prove that:
 - (a) the triangle DZE is isosceles
 - (b) the area of the triangle DZE is given by the formula

$$E_{DZE} = \frac{BC \cdot OK}{8}$$

4 Let A be a subset of $\{1, 2, 3, \dots, 50\}$ with the property: for every $x, y \in A$ with $x \neq y$, it holds that

$$\left|\frac{1}{x} - \frac{1}{y}\right| > \frac{1}{1000}.$$

Determine the largest possible number of elements that the set A can have.

TST-3 TST-3

1 Prove that for every natural number *k*, at least one of the integers

2k-1, 5k-1 and 13k-1

is not a perfect square.

2 In a triangle ABC with $\hat{A} = 80^{\circ}$ and $\hat{B} = 60^{\circ}$, the internal angle bisector of \hat{C} meets the side AB at the point D. The parallel from D to the side AC, meets the side BC at the point E.

Find the measure of the angle $\angle EAB$.

3 If a, b, c are positive real numbers with abc = 1, prove that (a) $2\left(\frac{ab}{a+b} + \frac{bc}{b+c} + \frac{ca}{c+a}\right) \ge \frac{9}{ab+bc+ca}$ (b) (c) ab = ba = ac) 0

$$2\left(\frac{ab}{a+b} + \frac{bc}{b+c} + \frac{ca}{c+a}\right) \ge \frac{9}{a^2b + b^2c + c^2a}$$

AoPS Community

4 The numbers 1, 2, 3, ..., 10 are written on the blackboard. In each step, Andrew chooses two numbers a, b which are written on the blackboard such that $a \ge 2b$, he erases them, and in their place writes the number a - 2b.

Find all numbers n, such that after a sequence of steps as above, at the end only the number n will remain on the blackboard.

AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱