AoPS Community

www.artofproblemsolving.com/community/c2995570
by Demetres

TST-1 TST-1

1 Find all integer values of x for which the value of the expression

$$
x^{2}+6 x+33
$$

is a perfect square.
2 Let $A B C D$ be a square. Let E, Z be points on the sides $A B, C D$ of the square respectively, such that $D E \| B Z$. Assume that the triangles $\triangle E A D, \triangle Z C B$ and the parallelogram $B E D Z$ have the same area.

If the distance between the parallel lines $D E$ and $B Z$ is equal to 1 , determine the area of the square.

3 If x, y are real numbers with $x+y \geqslant 0$, determine the minimum value of the expression

$$
K=x^{5}+y^{5}-x^{4} y-x y^{4}+x^{2}+4 x+7
$$

For which values of x, y does K take its minimum value?
4 Consider the digits $1,2,3,4,5,6,7$.
(a) Determine the number of seven-digit numbers with distinct digits that can be constructed using the digits above.
(b) If we place all of these seven-digit numbers in increasing order, find the seven-digit number which appears in the $2022^{\text {th }}$ position.

TST-2 TST-2

1 Determine all real numbers $x \in \mathbb{R}$ for which

$$
\left\lfloor\frac{x}{2}\right\rfloor+\left\lfloor\frac{x}{3}\right\rfloor=x-2022 .
$$

The notation $\lfloor z\rfloor$, for $z \in \mathbb{R}$, denotes the largest integer which is less than or equal to z. For example:

$$
\lfloor 3.98\rfloor=3 \quad \text { and } \quad\lfloor 0.14\rfloor=0 .
$$

2 Determine all pairs of prime numbers (p, q) which satisfy the equation

$$
p^{3}+q^{3}+1=p^{2} q^{2}
$$

3 Let $A B C$ be an acute-angled triangle, and let D, E and K be the midpoints of its sides $A B, A C$ and $B C$ respectively. Let O be the circumcentre of triangle $A B C$, and let M be the foot of the perpendicular from A on the line $B C$. From the midpoint P of $O M$ we draw a line parallel to $A M$, which meets the lines $D E$ and $O A$ at the points T and Z respectively. Prove that:
(a) the triangle $D Z E$ is isosceles
(b) the area of the triangle $D Z E$ is given by the formula

$$
E_{D Z E}=\frac{B C \cdot O K}{8}
$$

4 Let A be a subset of $\{1,2,3, \ldots, 50\}$ with the property: for every $x, y \in A$ with $x \neq y$, it holds that

$$
\left|\frac{1}{x}-\frac{1}{y}\right|>\frac{1}{1000} .
$$

Determine the largest possible number of elements that the set A can have.

TST-3 TST-3

1 Prove that for every natural number k, at least one of the integers

$$
2 k-1, \quad 5 k-1 \quad \text { and } \quad 13 k-1
$$

is not a perfect square.
2 In a triangle $A B C$ with $\widehat{A}=80^{\circ}$ and $\widehat{B}=60^{\circ}$, the internal angle bisector of \widehat{C} meets the side $A B$ at the point D. The parallel from D to the side $A C$, meets the side $B C$ at the point E.

Find the measure of the angle $\angle E A B$.
3 If a, b, c are positive real numbers with $a b c=1$, prove that
(a)

$$
2\left(\frac{a b}{a+b}+\frac{b c}{b+c}+\frac{c a}{c+a}\right) \geqslant \frac{9}{a b+b c+c a}
$$

(b)

$$
2\left(\frac{a b}{a+b}+\frac{b c}{b+c}+\frac{c a}{c+a}\right) \geqslant \frac{9}{a^{2} b+b^{2} c+c^{2} a}
$$

4 The numbers $1,2,3, \ldots, 10$ are written on the blackboard. In each step, Andrew chooses two numbers a, b which are written on the blackboard such that $a \geqslant 2 b$, he erases them, and in their place writes the number $a-2 b$.

Find all numbers n, such that after a sequence of steps as above, at the end only the number n will remain on the blackboard.

