www.artofproblemsolving.com/community/c2995676
by Demetres

TST 1 TST 1

1 Find all pairs of real numbers (x, y) for which

$$
\begin{aligned}
& x^{2}+y^{2}+x y=133 \\
& x+y+\sqrt{x y}=19
\end{aligned}
$$

2 Let n, m be positive integers such that

$$
n(4 n+1)=m(5 m+1)
$$

(a) Show that the difference $n-m$ is a perfect square of a positive integer.
(b) Find a pair of positive integers (n, m) which satisfies the above relation.

Additional part (not asked in the TST): Find all such pairs (n, m).
3 Let $\triangle A B C$ be an acute-angled triangle with $A B<A C$ and let (c) be its circumcircle with center O. Let M be the midpoint of $B C$. The line $A M$ meets the circle (c) again at the point D. The circumcircle $\left(c_{1}\right)$ of triangle $\triangle M D C$ intersects the line $A C$ at the points C and I, and the circumcircle $\left(c_{2}\right)$ of $\triangle A M I$ intersects the line $A B$ at the points A and Z.

If N is the foot of the perpendicular from B on $A C$, and P is the second point of intersection of $Z N$ with $\left(c_{2}\right)$, prove that the quadrilateral with vertices the points N, P, I and M is a parallelogram.

4 Let m, n be positive integers with $m<n$ and consider an $n \times n$ board from which its upper left $m \times m$ part has been removed. An example of such board for $n=5$ and $m=2$ is shown below.

Determine for which pairs (m, n) this board can be tiled with 3×1 tiles. Each tile can be positioned either horizontally or vertically so that it covers exactly three squares of the board. The tiles should not overlap and should not cover squares outside of the board.

TST 2 TST 2

1 Find all pairs of integers (m, n) which satisfy the equation

$$
\left(2 n^{2}+5 m-5 n-m n\right)^{2}=m^{3} n
$$

2 Determine for how many positive integers $n \in\{1,2, \ldots, 2022\}$ it holds that 402 divides at least one of

$$
n^{2}-1, n^{3}-1, n^{4}-1
$$

3 Let $A B C$ be an obtuse-angled triangle with $\angle A B C>90^{\circ}$, and let (c) be its circumcircle. The internal angle bisector of $\angle B A C$ meets again the circle (c) at the point E, and the line $B C$ at the point D. The circle of diameter $D E$ meets the circle (c) at the point H.
If the line $H E$ meets the line $B C$ at the point K, prove that:
(a) the points K, H, D and A are concyclic
(b) the line $A H$ passes through the point of intersection of the tangents to the circle (c) at the points B and C.

4 Let

$$
M=\{1,2,3, \ldots, 2022\}
$$

Determine the least positive integer k, such that for every k subsets of M with the cardinality of each subset equal to 3 , there are two of these subsets with exactly one common element.

