AoPS Community

Manhattan Mathematical Olympiad 2008

www.artofproblemsolving.com/community/c3000078
by parmenides51

- \quad Grades 5-6
- p1. What is the minimal number of acute triangles one can cut the regular polygon with 2008 edges? Justify your answer.
p2. A boy has as many sisters as brothers, but each sister has only half as many sisters as brothers. How many brothers and sisters are in the family?
p3. The teacher asked each of four children to think of a four-digit number. "Now please transfer the first digit to the end and add the new number to the old one. Tell me your results".
Mary: 8, 612
Jack: 4, 322
Kate: 9, 867
John: 13, 859.
"Everyone except Kate is wrong", said the teacher. How did he know?
p4. There are three closed boxes on a table. It is known that one contains two black balls, another contains one black and one white ball, and the third one contains two white balls. Each box has a sticker: "Two whites", "Two blacks", "One white and one black". It is known that all stickers are wrong. How can one place stickers on the boxes correctly by taking just one ball from one box, and not looking inside?

PS. You should use hide for answers.

- \quad Grades 7-8

- p1. Heights of the acute triangle $A B C$ intersect at the point O. It is known that $O C=A B$. Find the angle $A C B$.
p2. Prove that if p and q are prime numbers which are greater than 3 then $p^{2}-q^{2}$ is divisible by 24.
p3. What is the angle between the hands of a clock when it shows $9: 20$?
p4. Prove that there exists a whole number divisible by 5^{1000} which does not contain zeros among its digits.

PS. You should use hide for answers.

- \quad Grades 9-12

- p1. All trees in the forest have different heights and are taller than 10 ft and shorter than 50 ft . It is known that the distance between any two trees does not exceed the difference of their heights. Prove that the forest can be surrounded by a fence 80 ft long.
p2. Recall that the symbol n ! means the product $1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$. Simplify

$$
\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\ldots+\frac{2007}{2008!}
$$

p3. Find last two digits of the number $14^{14^{14}}$ (we raise 14 to the power 14^{14}).
p4. Solve the equation $x^{2} / 3+48 / x^{2}=10(x / 3-4 / x)$.

PS. You should use hide for answers.

