

AoPS Community

2022 Greece National Olympiad

Greece National Olympiad 2022

www.artofproblemsolving.com/community/c3000111 by Orestis_Lignos

- 1 Let ABC be a triangle such that AB < AC < BC. Let D, E be points on the segment BC such that BD = BA and CE = CA. If K is the circumcenter of triangle ADE, F is the intersection of lines AD, KC and G is the intersection of lines AE, KB, then prove that the circumcircle of triangle KDE (let it be c_1), the circle with center the point F and radius FE (let it be c_2) and the circle with center G and radius GD (let it be c_3) concur on a point which lies on the line AK.
- **2** Let n > 4 be a positive integer, which is divisible by 4. We denote by A_n the sum of the odd positive divisors of n. We also denote B_n the sum of the even positive divisors of n, excluding the number n itself. Find the least possible value of the expression

$$f(n) = B_n - 2A_n,$$

for all possible values of n, as well as for which positive integers n this minimum value is attained.

3 The positive real numbers *a*, *b*, *c*, *d* satisfy the equality

$$a + bc + cd + db + \frac{1}{ab^2c^2d^2} = 18.$$

Find the maximum possible value of *a*.

4 Let Q_n be the set of all *n*-tuples $x = (x_1, ..., x_n)$ with $x_i \in \{0, 1, 2\}$, i = 1, 2, ..., n. A triple (x, y, z)(where $x = (x_1, x_2, ..., x_n)$, $y = (y_1, y_2, ..., y_n)$, $z = (z_1, z_2, ..., z_n)$) of distinct elements of Q_n is called a *good* triple, if there exists at least one $i \in \{1, 2, ..., n\}$, for which $\{x_i, y_i, z_i\} = \{0, 1, 2\}$. A subset A of Q_n will be called a *good* subset, if any three elements of A form a *good* triple. Prove that every *good* subset of Q_n contains at most $2 \cdot \left(\frac{3}{2}\right)^n$ elements.

Act of Problem Solving is an ACS WASC Accredited School.