AoPS Community

Greece National Olympiad 2022

www.artofproblemsolving.com/community/c3000111
by Orestis_Lignos

1 Let $A B C$ be a triangle such that $A B<A C<B C$. Let D, E be points on the segment $B C$ such that $B D=B A$ and $C E=C A$. If K is the circumcenter of triangle $A D E, F$ is the intersection of lines $A D, K C$ and G is the intersection of lines $A E, K B$, then prove that the circumcircle of triangle $K D E$ (let it be c_{1}), the circle with center the point F and radius $F E$ (let it be c_{2}) and the circle with center G and radius $G D$ (let it be c_{3}) concur on a point which lies on the line $A K$.

2 Let $n>4$ be a positive integer, which is divisible by 4 . We denote by A_{n} the sum of the odd positive divisors of n. We also denote B_{n} the sum of the even positive divisors of n, excluding the number n itself. Find the least possible value of the expression

$$
f(n)=B_{n}-2 A_{n},
$$

for all possible values of n, as well as for which positive integers n this minimum value is attained.

3 The positive real numbers a, b, c, d satisfy the equality

$$
a+b c+c d+d b+\frac{1}{a b^{2} c^{2} d^{2}}=18
$$

Find the maximum possible value of a.
$4 \quad$ Let Q_{n} be the set of all n-tuples $x=\left(x_{1}, \ldots, x_{n}\right)$ with $x_{i} \in\{0,1,2\}, i=1,2, \ldots, n$. A triple (x, y, z) (where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), y=\left(y_{1}, y_{2}, \ldots, y_{n}\right), z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$) of distinct elements of Q_{n} is called a good triple, if there exists at least one $i \in\{1,2, \ldots, n\}$, for which $\left\{x_{i}, y_{i}, z_{i}\right\}=\{0,1,2\}$. A subset A of Q_{n} will be called a good subset, if any three elements of A form a good triple. Prove that every good subset of Q_{n} contains at most $2 \cdot\left(\frac{3}{2}\right)^{n}$ elements.

