AoPS Community

2020 Utah Mathematical Olympiad

Utah Mathematical Olympiad 2020

www.artofproblemsolving.com/community/c3000132
by parmenides51
$1 \quad$ An $n \times n$ grid of islands is connected by bridges, as in the following picture for $n=3$: https://cdn.artofproblemsolving.com/attachments/e/3/7f2eca9d13e4f84d61afce3fb06b12e25d8e8 png
In the above picture, there are 9 islands and 12 bridges. A path consists of starting at any island, travelling along the bridges, and ending at any island. For example, a path could visit the three islands along the top of the grid from left to right, crossing two bridges along the way. A perfect path is a path such that:

- Every island is visited exactly twice; • Every bridge is crossed at least once; and • The path never makes a U-turn, i.e. it never travels along a bridge and then immediately back again.
(a) Find a perfect path when $n=3$, or prove it is impossible.
(b) Find a perfect path when $n=4$, or prove it is impossible.

2 Let a and b be real numbers with the property that $a^{n}-b^{n}$ is rational for any positive integer $n \geq 2$. Show that either a and b are both rational, or that $a=b$.

3 In a 3×3 square grid, four of the nine squares are chosen at random and shaded. In the resulting figure, a region is a set of shaded squares that are vertically or horizontally (not diagonally) adjacent. For example, the following grid has two regions, one containing 3 squares and the other containing 1 square:
https://cdn.artofproblemsolving.com/attachments/4/a/dd5e438e364c5ba0b596446b2fddaa5f1f02s png
Find the expected value of the number of regions.
4 Consider a circle C and a line L which does not intersect C. Let A be the point on C nearest to L and let B be the point on C furthest from L. Let line $A B$ intersect L at point X. Let C^{\prime} be the circle centered at B passing through X , and let K be an intersection of C^{\prime} with the perpendicular bisector of line segment $\overline{A X}$. Finally, let the circle with center X passing through K intersect line segment $\overline{A B}$ at a point H. Prove that for every point P lying on L, the circle through H centered at P is perpendicular to C.

Note: Two circles C_{1} and C_{2} are called perpendicular if they intersect at right angles. In other words, for each intersection point I of C_{1} and C_{2}, if the tangent line is drawn to C_{1} through I and to C_{2} through I, the two tangents are perpendicular.

5 We say a triangle with integer side lengths a, b and c is primitive if a, b, and c share no common factor greater than 1 , and special if it has an angle with measure 120°. For example, the triangle
with side lengths 3,5 , and 7 is both primitive and special.
Prove that there are infinitely many primitive special triangles.
6 The positive integers between 1 and 10 are holding an election. They are sitting around a circular table -1 , then 2 , then 3 , and so on in clockwise order. Starting with 1 and going clockwise, each integer votes for a president (between 1 and 10). After all 10 integers have voted, the player with the most votes wins the election. The higher integer wins in case of tie.
https://cdn.artofproblemsolving.com/attachments/a/0/209797f7751b76757ecd552a7fee6a6ccc8e
png
Every integer prefers itself to win; but if it can't win, it prefers the other integers in clockwise order from itself. For example, 8 prefers itself, then 9 , then 10 , then 1 , then 2 , and so on. Every integer is perfectly rational and knows that every other integer will behave perfectly rationally as well.
Who wins the election? Prove your answer.

