AoPS Community

Utah Mathematical Olympiad 2021

www.artofproblemsolving.com/community/c3000133
by parmenides51

1 Find all ordered triples of integers (x, b, c), such that b is prime, c is odd and positive, and $x^{2}+$ $b x+c=0$.

2 Three circles, C_{1}, C_{2}, C_{3}, are drawn in the plane such that each pair is externally tangent. Circle D is drawn externally tangent to all three, and circle E internally tangent to all three. If D and E have the same center, prove of disprove that C_{1}, C_{2}, and C_{3} must have the same radius.
$3 \quad$ To each point P in the plane, a real number $f(P)$ is assigned. Is it possible that for every equilateral triangle $P Q R$ in the plane, $f(P)+f(Q)+f(R)$ is equal to the perimeter of $\triangle P Q R$?

4 Farmer Georgia has a positive integer number number c cows (which have four legs), and zero ostriches, on her farm on day 1 . On each day thereafter, she adds a combination of cows and ostriches to her farm, so that on each day $n \geq 2$, the number of animals on the farm is equal to exactly half the number of legs that were on the farm on day $n-1$. For example, there are $4 c$ legs on day 1 , so there must be exactly $2 c$ animals on day 2 . She may never remove animals from the farm.
Let $P_{c}(n)$ be the number of possible sequences of ordered pairs $\left(c_{1}, o_{1}\right),\left(c_{2}, o_{2}\right), \ldots,\left(c_{n}, o_{n}\right)$ such that c_{i}, o_{i} are the number of cows and ostriches, respectively, on the farm on day i, where $\left(c_{1}, o_{1}\right)=(c, 0)$. For example, we have $P_{1}(2)=2, P_{1}(3)=5$, and $P_{2}(3)=12$.
Find all positive integers c such that $P_{c}(2021)$ is a multiple of 3 .
$5 \quad$ Gog and Magog are playing a game with stones. Each player starts out with no stones, and they alternate taking turns. Gog goes first. On each turn, a player can either gain one new stone, or give at least one and no more than half of their stones to the other player. If a player has 20 or more stones, they lose.
Determine, with proof, whether Gog has a winning strategy, Magog has a winning strategy, or neither player has a winning strategy (the game goes on indefinitely).

6 Prove that for all positive integer n, the number of divisors of n ! is a divisor of $(2 n)$!.

