AoPS Community

2021-22

www.artofproblemsolving.com/community/c3001273
by Orestis_Lignos

1 (a) Find the value of the real number k, for which the polynomial $P(x)=x^{3}-k x+2$ has the number 2 as a root. In addition, for the value of k you will find, write this polynomial as the product of two polynomials with integer coefficients.
(b) If the positive real numbers a, b satisfy the equation

$$
2 a+b+\frac{4}{a b}=10,
$$

find the maximum possible value of a.
2 Let $A B C$ be an isosceles triangle, and point D in its interior such that

$$
D \hat{B} C=30^{\circ}, D \hat{B} A=50^{\circ}, D \hat{C} B=55^{\circ}
$$

(a) Prove that $\hat{B}=\hat{C}=80^{\circ}$.
(b) Find the measure of the angle $D \hat{A} C$.

3 On the board we write a series of n numbers, where $n \geq 40$, and each one of them is equal to either 1 or -1 , such that the following conditions both hold:
(i) The sum of every 40 consecutive numbers is equal to 0 .
(ii) The sum of every 42 consecutive numbers is not equal to 0 .

We denote by S_{n} the sum of the n numbers of the board. Find the maximum possible value of S_{n} for all possible values of n.

4 Find all couples of non-zero integers (x, y) such that, $x^{2}+y^{2}$ is a common divisor of $x^{5}+y$ and $y^{5}+x$.

