AoPS Community

EGMO Team Selection Test for Brazil 2022

www.artofproblemsolving.com/community/c3003199
by parmenides51, outback, Hoapham235, mathisreal

1 Let a, b, c be positive real numbers such that:

$$
\begin{gathered}
a b-c=3 \\
a b c=18
\end{gathered}
$$

Calculate the numerical value of $\frac{a b}{c}$
2 Let $\triangle A B C$ be a triangle in which $\angle A C B=40^{\circ}$ and $\angle B A C=60^{\circ}$. Let D be a point inside the segment $B C$ such that $C D=\frac{A B}{2}$ and let M be the midpoint of the segment $A C$. How much is the angle $\angle C M D$ in degrees?

3 A natural number is called chaotigal if it and its successor both have the sum of their digits divisible by 2021. How many digits are in the smallest chaotigal number?

4 Mariana plays with an 8×8 board with all its squares blank. She says that two houses are neighbors if they have a common side or vertex, that is, two houses can be neighbors vertically, horizontally or diagonally. The game consists of filling the 64 squares on the board, one after the other, each with a number according to the following rule: she always chooses a house blank and fill it with an integer equal to the number of neighboring houses that are still in White. Once this is done, the house is no longer considered blank.
Show that the value of the sum of all 64 numbers written on the board at the end of the game does not depend in the order of filling. Also, calculate the value of this sum.

Note: A house is not neighbor to itself.
Mariana brinca com um tabuleiro 8×8 com todas as suas casas em branco. Ela diz que duas casas s~ ao vizinhas se elas possu'ırem um lado ou um v'ertice em comum, ou seja, duas casas podem ser vizinhas
verticalmente, horizontalmente ou diagonalmente. A brincadeira consiste em preencher as 64 casas do tabuleiro,
uma ap'os a outra, cada uma com um n'umero de acordo com a seguinte regra: ela escolhe sempre uma casa
em branco e a preenche com on'umero inteiro igual 'a quantidade de casas vizinhas desta que ainda estejam em
branco. Feito isso, a casa n ao 'e mais considerada em branco.
Demonstre que o valor da soma de todos os 64 n'umeros escritos no tabuleiro ao final da brincadeira n ~ao depende
da ordem do preenchimento. Al'em disso, calcule o valor dessa soma.
Observa, cª ao: Uma casa n ao 'e vizinha a si mesma
5 For a given value t, we consider number sequences $a_{1}, a_{2}, a_{3}, \ldots$ such that $a_{n+1}=\frac{a_{n}+t}{a_{n}+1}$ for all $n \geq 1$.
(a) Suppose that $t=2$. Determine all starting values $a_{1}>0$ such that $\frac{4}{3} \leq a_{n} \leq \frac{3}{2}$ holds for all $n \geq 2$.
(b) Suppose that $t=-3$. Investigate whether $a_{2020}=a_{1}$ for all starting values a_{1} different from -1 and 1 .

6 The diagonals $A C$ and $B D$ of a convex quadrilateral $A B C D$ intersect at point M. The bisector of $\angle A C D$ meets the ray $B A$ at K. Given that $M A \cdot M C+M A \cdot C D=M B \cdot M D$, prove that $\angle B K C=\angle C D B$.

7 Let $a_{1}, a_{2}, \cdots, a_{2 n}$ be $2 n$ elements of $\{1,2,3, \cdots, 2 n-1\}(n>3)$ with the sum $a_{1}+a_{2}+\cdots+a_{2 n}=$ $4 n$. Prove that exist some numbers a_{i} with the sum is $2 n$.

8 Find all pairs (a, b) of positive integers, such that for every n positive integer, the equality $a^{n}+$ $b^{n}=c_{n}^{n+1}$ is true, for some c_{n} positive integer.

