Art of Problem Solving

Problems from the 2022 BAMO-12 and BAMO-8 exams

www.artofproblemsolving.com/community/c3004467
by asimov, IceWolf10, MirmanStudent08

A If I have 100 cards with all the numbers 1 through 100 on them, how should I put them in order to create the largest possible number?

B You are bargaining with a salesperson for the price of an item. Your first offer is a dollars and theirs is b dollars. After you raise your offer by a certain percentage and they lower their offer by the same percentage, you arrive at an agreed price. What is that price, in terms of a and b ?

C/1 The game of pool includes 15 balls that fit within a triangular rack as shown:

Seven of the balls are "striped" (not colored with a single color) and eight are "solid" (colored with a single color). Prove that no matter how the 15 balls are arranged in the rack, there must always be a pair of striped balls adjacent to each other.

D/2 Suppose that $p, p+d, p+2 d, p+3 d, p+4 d$, and $p+5 d$ are six prime numbers, where p and d are positive integers. Show that d must be divisible by 2,3 , and 5 .

E/3 A polygon is called convex if all its internal angles are smaller than 180°. Given a convex polygon, prove that one can find three distinct vertices A, P, and Q, where $P Q$ is a side of the polygon, such that the perpendicular from A to the line $P Q$ meets the segment $P Q$ (possible at P of Q).

4 Ten birds land on a 10-meter-long wire, each at a random point chosen uniformly along the wire. (That is, if we pick out any x-meter portion of the wire, there is an $\frac{x}{10}$ probability that a given bird will land there.) What is the probability that every bird sits more than one meter away from its closest neighbor?

5 Sofiya and Marquis are playing a game. Sofiya announces to Marquis that she's thinking of a polynomial of the form $f(x)=x^{3}+p x+q$ with three integer roots that are not necessarily
distinct. She also explains that all of the integer roots have absolute value less than (and not equal to) N, where N is some fixed number which she tells Marquis. As a "move" in this game, Marquis can ask Sofiya about any number x and Sofiya will tell him whether $f(x)$ is positive negative, or zero. Marquis's goal is to figure out Sofiya's polynomial.

If $N=3 \cdot 2^{k}$ for some positive integer k, prove that there is a strategy which allows Marquis to identify the polynomial after making at most $2 k+1$ "moves".

