

AoPS Community

Problems from the 2022 BAMO-12 and BAMO-8 exams

www.artofproblemsolving.com/community/c3004467 by asimov, IceWolf10, MirmanStudent08

- **A** If I have 100 cards with all the numbers 1 through 100 on them, how should I put them in order to create the largest possible number?
- **B** You are bargaining with a salesperson for the price of an item. Your first offer is *a* dollars and theirs is *b* dollars. After you raise your offer by a certain percentage and they lower their offer by the same percentage, you arrive at an agreed price. What is that price, in terms of *a* and *b*?
- C/1 The game of pool includes 15 balls that fit within a triangular rack as shown:

Seven of the balls are "striped" (not colored with a single color) and eight are "solid" (colored with a single color). Prove that no matter how the 15 balls are arranged in the rack, there must always be a pair of striped balls adjacent to each other.

- **D/2** Suppose that p, p + d, p + 2d, p + 3d, p + 4d, and p + 5d are six prime numbers, where p and d are positive integers. Show that d must be divisible by 2, 3, and 5.
- **E/3** A polygon is called *convex* if all its internal angles are smaller than 180° . Given a convex polygon, prove that one can find three distinct vertices A, P, and Q, where PQ is a side of the polygon, such that the perpendicular from A to the line PQ meets the segment PQ (possible at P of Q).
- **4** Ten birds land on a 10-meter-long wire, each at a random point chosen uniformly along the wire. (That is, if we pick out any *x*-meter portion of the wire, there is an $\frac{x}{10}$ probability that a given bird will land there.) What is the probability that every bird sits more than one meter away from its closest neighbor?
- 5 Sofiya and Marquis are playing a game. Sofiya announces to Marquis that she's thinking of a polynomial of the form $f(x) = x^3 + px + q$ with three integer roots that are not necessarily

AoPS Community

distinct. She also explains that all of the integer roots have absolute value less than (and not equal to) N, where N is some fixed number which she tells Marquis. As a "move" in this game, Marquis can ask Sofiya about any number x and Sofiya will tell him whether f(x) is positive negative, or zero. Marquis's goal is to figure out Sofiya's polynomial.

If $N = 3 \cdot 2^k$ for some positive integer k, prove that there is a strategy which allows Marquis to identify the polynomial after making at most 2k + 1 "moves".

AoPS Online 🔯 AoPS Academy 🙋 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.