

www.artofproblemsolving.com/community/c3004812

by Quidditch, Eyed, Aryan-23, mathleticguyyy, vvluo, trying_to_solve_br, popcorn1, VulcanForge, insertion-sort, MathLuis

- Day 0
- 1 For a positive integer n, consider a square cake which is divided into $n \times n$ pieces with at most one strawberry on each piece. We say that such a cake is *delicious* if both diagonals are fully occupied, and each row and each column has an odd number of strawberries. Find all positive integers n such that there is an $n \times n$ delicious cake with exactly $\left\lceil \frac{n^2}{2} \right\rceil$ strawberries on it.
- **2** Prove that, for all positive integers *m* and *n*, we have

$$\left\lfloor m\sqrt{2}\right\rfloor \cdot \left\lfloor n\sqrt{7}\right\rfloor < \left\lfloor mn\sqrt{14}\right\rfloor.$$

3 Let *P* be a point on the circumcircle of acute triangle *ABC*. Let *D*, *E*, *F* be the reflections of *P* in the *A*-midline, *B*-midline, and *C*-midline. Let ω be the circumcircle of the triangle formed by the perpendicular bisectors of *AD*, *BE*, *CF*.

Show that the circumcircles of $\triangle ADP$, $\triangle BEP$, $\triangle CFP$, and ω share a common point.

- Day 1
- **1** Given a positive integer k show that there exists a prime p such that one can choose distinct integers $a_1, a_2 \cdots, a_{k+3} \in \{1, 2, \cdots, p-1\}$ such that p divides $a_i a_{i+1} a_{i+2} a_{i+3} i$ for all $i = 1, 2, \cdots, k$.

South Africa

2 Suppose that a, b, c, d are positive real numbers satisfying (a + c)(b + d) = ac + bd. Find the smallest possible value of

$$\frac{a}{b} + \frac{b}{c} + \frac{c}{d} + \frac{d}{a}$$

Israel

3 Let p be an odd prime, and put $N = \frac{1}{4}(p^3 - p) - 1$. The numbers 1, 2, ..., N are painted arbitrarily in two colors, red and blue. For any positive integer $n \le N$, denote r(n) the fraction of integers $\{1, 2, ..., n\}$ that are red.

	Prove that there exists a positive integer $a \in \{1, 2,, p-1\}$ such that $r(n) \neq a/p$ for all $n = 1, 2,, N$.
	Netherlands
-	Day 2
1	Let $ABCD$ be a convex quadrilateral with $\angle ABC > 90$, $CDA > 90$ and $\angle DAB = \angle BCD$. Denote by E and F the reflections of A in lines BC and CD , respectively. Suppose that the segments AE and AF meet the line BD at K and L , respectively. Prove that the circumcircles of triangles BEK and DFL are tangent to each other.
	Slovakia
2	For any odd prime p and any integer n , let $d_p(n) \in \{0, 1, \ldots, p-1\}$ denote the remainder when n is divided by p . We say that (a_0, a_1, a_2, \ldots) is a p -sequence, if a_0 is a positive integer coprime to p , and $a_{n+1} = a_n + d_p(a_n)$ for $n \ge 0$. (a) Do there exist infinitely many primes p for which there exist p -sequences (a_0, a_1, a_2, \ldots) and (b_0, b_1, b_2, \ldots) such that $a_n > b_n$ for infinitely many n , and $b_n > a_n$ for infinitely many n ? (b) Do there exist infinitely many primes p for which there exist p -sequences (a_0, a_1, a_2, \ldots) and (b_0, b_1, b_2, \ldots) such that $a_0 < b_0$, but $a_n > b_n$ for all $n \ge 1$?
	United Kingdom
3	Consider any rectangular table having finitely many rows and columns, with a real number $a(r, c)$ in the cell in row r and column c . A pair (R, C) , where R is a set of rows and C a set of columns, is called a <i>saddle pair</i> if the following two conditions are satisfied:
	- (i) For each row r' , there is $r \in R$ such that $a(r,c) \ge a(r',c)$ for all $c \in C$; - (ii) For each column c' , there is $c \in C$ such that $a(r,c) \le a(r,c')$ for all $r \in R$.
	A saddle pair (R, C) is called a <i>minimal pair</i> if for each saddle pair (R', C') with $R' \subseteq R$ and $C' \subseteq C$, we have $R' = R$ and $C' = C$. Prove that any two minimal pairs contain the same number of rows.
-	Day 3
1	Version 1. Let <i>n</i> be a positive integer, and set $N = 2^n$. Determine the smallest real number a_n such that, for all real <i>x</i> , $\sqrt[N]{\frac{x^{2N}+1}{2}} \leq a_n(x-1)^2 + x.$

Version 2. For every positive integer N, determine the smallest real number b_N such that, for all real x,

$$\sqrt[N]{\frac{x^{2N}+1}{2}} \le b_N(x-1)^2 + x.$$

2	In the plane, there are $n \ge 6$ pairwise disjoint disks D_1, D_2, \ldots, D_n with radii $R_1 \ge R_2 \ge \ldots \ge R_n$. For every $i = 1, 2, \ldots, n$, a point P_i is chosen in disk D_i . Let O be an arbitrary point in the plane. Prove that
	$OP_1 + OP_2 + \ldots + OP_n \ge R_6 + R_7 + \ldots + R_n.$
	(A disk is assumed to contain its boundary.)
3	Determine all functions f defined on the set of all positive integers and taking non-negative integer values, satisfying the three conditions:
	- $(i) f(n) \neq 0$ for at least one n ; - $(ii) f(xy) = f(x) + f(y)$ for every positive integers x and y ; - (iii) there are infinitely many positive integers n such that $f(k) = f(n - k)$ for all $k < n$.
-	Day 4
1	For each prime p , construct a graph G_p on $\{1, 2, \dots p\}$, where $m \neq n$ are adjacent if and only if p divides $(m^2 + 1 - n)(n^2 + 1 - m)$. Prove that G_p is disconnected for infinitely many p
2	Let <i>ABCD</i> be a cyclic quadrilateral. Points K, L, M, N are chosen on <i>AB</i> , <i>BC</i> , <i>CD</i> , <i>DA</i> such that <i>KLMN</i> is a rhombus with <i>KL</i> \parallel <i>AC</i> and <i>LM</i> \parallel <i>BD</i> . Let $\omega_A, \omega_B, \omega_C, \omega_D$ be the incircles of $\triangle ANK, \triangle BKL, \triangle CLM, \triangle DMN$.
	Prove that the common internal tangents to ω_A , and ω_C and the common internal tangents to ω_B and ω_D are concurrent.
3	Find all functions $f : \mathbb{Z} \to \mathbb{Z}$ satisfying
	$f^{a^2+b^2}(a+b) = af(a) + bf(b)$
	for all integers a and b
-	Day 5
1	In a regular 100-gon, 41 vertices are colored black and the remaining 59 vertices are colored white. Prove that there exist 24 convex quadrilaterals Q_1, \ldots, Q_{24} whose corners are vertices of the 100-gon, so that
	- the quadrilaterals Q_1, \ldots, Q_{24} are pairwise disjoint, and - every quadrilateral Q_i has three corners of one color and one corner of the other color.
2	Let \mathcal{A} be the set of all $n \in \mathbb{N}$ for which there exist $k \in \mathbb{N}$ and $a_0, a_1, \ldots, a_{k-1} \in \{1, 2, \ldots, 9\}$ such that $a_0 \ge a_1 \ge \cdots \ge a_{k-1}$ and $n = a_0 + a_1 \cdot 10^1 + \cdots + a_{k-1} \cdot 10^{k-1}$. Let \mathcal{B} be the set of all $m \in \mathbb{N}$

2021 Thailand TST

for which there exist $l \in \mathbb{N}$ and $b_0, b_1, \dots, b_{l-1} \in \{1, 2, \dots, 9\}$ such that $b_0 \le b_1 \le \dots \le b_{l-1}$ and $m = b_0 + b_1 \cdot 10^1 + \dots + b_{l-1} \cdot 10^{l-1}$.

- Are there infinitely many $n \in \mathcal{A}$ such that $n^2 - 3 \in \mathcal{A}$? - Are there infinitely many $m \in \mathcal{B}$ such that $m^2 - 3 \in \mathcal{B}$?

Proposed by Pakawut Jiradilok and Wijit Yangjit

3 A magician intends to perform the following trick. She announces a positive integer n, along with 2n real numbers $x_1 < \cdots < x_{2n}$, to the audience. A member of the audience then secretly chooses a polynomial P(x) of degree n with real coefficients, computes the 2n values $P(x_1), \ldots, P(x_{2n})$, and writes down these 2n values on the blackboard in non-decreasing order. After that the magician announces the secret polynomial to the audience. Can the magician find a strategy to perform such a trick?

– Day 6

1 Let A denote the set of all polynomials in three variables x, y, z with integer coefficients. Let B denote the subset of A formed by all polynomials which can be expressed as

(x+y+z)P(x,y,z) + (xy+yz+zx)Q(x,y,z) + xyzR(x,y,z)

with $P, Q, R \in A$. Find the smallest non-negative integer n such that $x^i y^j z^k \in B$ for all non-negative integers i, j, k satisfying $i + j + k \ge n$.

2 The Fibonacci numbers $F_0, F_1, F_2, ...$ are defined inductively by $F_0 = 0, F_1 = 1$, and $F_{n+1} = F_n + F_{n-1}$ for $n \ge 1$. Given an integer $n \ge 2$, determine the smallest size of a set S of integers such that for every k = 2, 3, ..., n there exist some $x, y \in S$ such that $x - y = F_k$.

Proposed by Croatia

3 Let ABC be a triangle with AB < AC, incenter I, and A excenter I_A . The incircle meets BC at D. Define $E = AD \cap BI_A$, $F = AD \cap CI_A$. Show that the circumcircle of $\triangle AID$ and $\triangle I_AEF$ are tangent to each other

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.