AoPS Community

www.artofproblemsolving.com/community/c3004812
by Quidditch, Eyed, Aryan-23, mathleticguyyy, vvluo, trying_to_solve_br, popcorn1, VulcanForge, insertionsort, MathLuis

- Day 0
$1 \quad$ For a positive integer n, consider a square cake which is divided into $n \times n$ pieces with at most one strawberry on each piece. We say that such a cake is delicious if both diagonals are fully occupied, and each row and each column has an odd number of strawberries.
Find all positive integers n such that there is an $n \times n$ delicious cake with exactly $\left\lceil\frac{n^{2}}{2}\right\rceil$ strawberries on it.

2 Prove that, for all positive integers m and n, we have

$$
\lfloor m \sqrt{2}\rfloor \cdot\lfloor n \sqrt{7}\rfloor<\lfloor m n \sqrt{14}\rfloor .
$$

3 Let P be a point on the circumcircle of acute triangle $A B C$. Let D, E, F be the reflections of P in the A-midline, B-midline, and C-midline. Let ω be the circumcircle of the triangle formed by the perpendicular bisectors of $A D, B E, C F$.

Show that the circumcircles of $\triangle A D P, \triangle B E P, \triangle C F P$, and ω share a common point.

- Day 1

1 Given a positive integer k show that there exists a prime p such that one can choose distinct integers $a_{1}, a_{2} \cdots, a_{k+3} \in\{1,2, \cdots, p-1\}$ such that p divides $a_{i} a_{i+1} a_{i+2} a_{i+3}-i$ for all $i=$ $1,2, \cdots, k$.

South Africa

2 Suppose that a, b, c, d are positive real numbers satisfying $(a+c)(b+d)=a c+b d$. Find the smallest possible value of

$$
\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a} .
$$

Israel
3 Let p be an odd prime, and put $N=\frac{1}{4}\left(p^{3}-p\right)-1$. The numbers $1,2, \ldots, N$ are painted arbitrarily in two colors, red and blue. For any positive integer $n \leqslant N$, denote $r(n)$ the fraction of integers $\{1,2, \ldots, n\}$ that are red.

Prove that there exists a positive integer $a \in\{1,2, \ldots, p-1\}$ such that $r(n) \neq a / p$ for all $n=1,2, \ldots, N$.

Netherlands

- Day 2

1 Let $A B C D$ be a convex quadrilateral with $\angle A B C>90, C D A>90$ and $\angle D A B=\angle B C D$. Denote by E and F the reflections of A in lines $B C$ and $C D$, respectively. Suppose that the segments $A E$ and $A F$ meet the line $B D$ at K and L, respectively. Prove that the circumcircles of triangles $B E K$ and $D F L$ are tangent to each other.

Slovakia

2 For any odd prime p and any integer n, let $d_{p}(n) \in\{0,1, \ldots, p-1\}$ denote the remainder when n is divided by p. We say that ($a_{0}, a_{1}, a_{2}, \ldots$) is a p-sequence, if a_{0} is a positive integer coprime to p, and $a_{n+1}=a_{n}+d_{p}\left(a_{n}\right)$ for $n \geqslant 0$.
(a) Do there exist infinitely many primes p for which there exist p-sequences ($a_{0}, a_{1}, a_{2}, \ldots$) and $\left(b_{0}, b_{1}, b_{2}, \ldots\right)$ such that $a_{n}>b_{n}$ for infinitely many n, and $b_{n}>a_{n}$ for infinitely many n ?
(b) Do there exist infinitely many primes p for which there exist p-sequences ($a_{0}, a_{1}, a_{2}, \ldots$) and $\left(b_{0}, b_{1}, b_{2}, \ldots\right)$ such that $a_{0}<b_{0}$, but $a_{n}>b_{n}$ for all $n \geqslant 1$?

United Kingdom
3 Consider any rectangular table having finitely many rows and columns, with a real number $a(r, c)$ in the cell in row r and column c. A pair (R, C), where R is a set of rows and C a set of columns, is called a saddle pair if the following two conditions are satisfied:

- (i) For each row r^{\prime}, there is $r \in R$ such that $a(r, c) \geqslant a\left(r^{\prime}, c\right)$ for all $c \in C$;
- (ii) For each column c^{\prime}, there is $c \in C$ such that $a(r, c) \leqslant a\left(r, c^{\prime}\right)$ for all $r \in R$.

A saddle pair (R, C) is called a minimal pair if for each saddle pair (R^{\prime}, C^{\prime}) with $R^{\prime} \subseteq R$ and $C^{\prime} \subseteq C$, we have $R^{\prime}=R$ and $C^{\prime}=C$. Prove that any two minimal pairs contain the same number of rows.

- Day 3

$1 \quad$ Version 1. Let n be a positive integer, and set $N=2^{n}$. Determine the smallest real number a_{n} such that, for all real x,

$$
\sqrt[N]{\frac{x^{2 N}+1}{2}} \leqslant a_{n}(x-1)^{2}+x
$$

Version 2. For every positive integer N, determine the smallest real number b_{N} such that, for all real x,

$$
\sqrt[N]{\frac{x^{2 N}+1}{2}} \leqslant b_{N}(x-1)^{2}+x
$$

2 In the plane, there are $n \geqslant 6$ pairwise disjoint disks $D_{1}, D_{2}, \ldots, D_{n}$ with radii $R_{1} \geqslant R_{2} \geqslant \ldots \geqslant$ R_{n}. For every $i=1,2, \ldots, n$, a point P_{i} is chosen in disk D_{i}. Let O be an arbitrary point in the plane. Prove that

$$
O P_{1}+O P_{2}+\ldots+O P_{n} \geqslant R_{6}+R_{7}+\ldots+R_{n}
$$

(A disk is assumed to contain its boundary.)
3 Determine all functions f defined on the set of all positive integers and taking non-negative integer values, satisfying the three conditions:

- (i) $f(n) \neq 0$ for at least one n;
- (ii) $f(x y)=f(x)+f(y)$ for every positive integers x and y;
- (iii) there are infinitely many positive integers n such that $f(k)=f(n-k)$ for all $k<n$.

- Day 4

1 For each prime p, construct a graph G_{p} on $\{1,2, \ldots p\}$, where $m \neq n$ are adjacent if and only if p divides $\left(m^{2}+1-n\right)\left(n^{2}+1-m\right)$. Prove that G_{p} is disconnected for infinitely many p

2 Let $A B C D$ be a cyclic quadrilateral. Points K, L, M, N are chosen on $A B, B C, C D, D A$ such that $K L M N$ is a rhombus with $K L \| A C$ and $L M \| B D$. Let $\omega_{A}, \omega_{B}, \omega_{C}, \omega_{D}$ be the incircles of $\triangle A N K, \triangle B K L, \triangle C L M, \triangle D M N$.
Prove that the common internal tangents to ω_{A}, and ω_{C} and the common internal tangents to ω_{B} and ω_{D} are concurrent.

3 Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ satisfying

$$
f^{a^{2}+b^{2}}(a+b)=a f(a)+b f(b)
$$

for all integers a and b

- \quad Day 5

1 In a regular 100-gon, 41 vertices are colored black and the remaining 59 vertices are colored white. Prove that there exist 24 convex quadrilaterals Q_{1}, \ldots, Q_{24} whose corners are vertices of the 100 -gon, so that

- the quadrilaterals Q_{1}, \ldots, Q_{24} are pairwise disjoint, and - every quadrilateral Q_{i} has three corners of one color and one corner of the other color.
$2 \quad$ Let \mathcal{A} be the set of all $n \in \mathbb{N}$ for which there exist $k \in \mathbb{N}$ and $a_{0}, a_{1}, \ldots, a_{k-1} \in\{1,2, \ldots, 9\}$ such that $a_{0} \geq a_{1} \geq \cdots \geq a_{k-1}$ and $n=a_{0}+a_{1} \cdot 10^{1}+\cdots+a_{k-1} \cdot 10^{k-1}$. Let \mathcal{B} be the set of all $m \in \mathbb{N}$
for which there exist $l \in \mathbb{N}$ and $b_{0}, b_{1}, \ldots, b_{l-1} \in\{1,2, \ldots, 9\}$ such that $b_{0} \leq b_{1} \leq \cdots \leq b_{l-1}$ and $m=b_{0}+b_{1} \cdot 10^{1}+\cdots+b_{l-1} \cdot 10^{l-1}$.
- Are there infinitely many $n \in \mathcal{A}$ such that $n^{2}-3 \in \mathcal{A}$?
- Are there infinitely many $m \in \mathcal{B}$ such that $m^{2}-3 \in \mathcal{B}$?

Proposed by Pakawut Jiradilok and Wijit Yangjit
3 A magician intends to perform the following trick. She announces a positive integer n, along with $2 n$ real numbers $x_{1}<\cdots<x_{2 n}$, to the audience. A member of the audience then secretly chooses a polynomial $P(x)$ of degree n with real coefficients, computes the $2 n$ values $P\left(x_{1}\right), \ldots, P\left(x_{2 n}\right)$, and writes down these $2 n$ values on the blackboard in non-decreasing order. After that the magician announces the secret polynomial to the audience. Can the magician find a strategy to perform such a trick?

- \quad Day 6
$1 \quad$ Let \mathcal{A} denote the set of all polynomials in three variables x, y, z with integer coefficients. Let \mathcal{B} denote the subset of \mathcal{A} formed by all polynomials which can be expressed as

$$
(x+y+z) P(x, y, z)+(x y+y z+z x) Q(x, y, z)+x y z R(x, y, z)
$$

with $P, Q, R \in \mathcal{A}$. Find the smallest non-negative integer n such that $x^{i} y^{j} z^{k} \in \mathcal{B}$ for all nonnegative integers i, j, k satisfying $i+j+k \geq n$.

2 The Fibonacci numbers $F_{0}, F_{1}, F_{2}, \ldots$ are defined inductively by $F_{0}=0, F_{1}=1$, and $F_{n+1}=$ $F_{n}+F_{n-1}$ for $n \geq 1$. Given an integer $n \geq 2$, determine the smallest size of a set S of integers such that for every $k=2,3, \ldots, n$ there exist some $x, y \in S$ such that $x-y=F_{k}$.

Proposed by Croatia
3 Let $A B C$ be a triangle with $A B<A C$, incenter I, and A excenter I_{A}. The incircle meets $B C$ at D. Define $E=A D \cap B I_{A}, F=A D \cap C I_{A}$. Show that the circumcircle of $\triangle A I D$ and $\triangle I_{A} E F$ are tangent to each other

