AoPS Community

VMO 2022

www.artofproblemsolving.com/community/c3004917
by parmenides51, wardtnt1234

- Day 1

1 Let a be a non-negative real number and a sequence $\left(u_{n}\right)$ defined as: $u_{1}=6, u_{n+1}=\frac{2 n+a}{n}+$ $\sqrt{\frac{n+a}{n} u_{n}+4}, \forall n \geq 1$
a) With $a=0$, prove that there exist a finite limit of $\left(u_{n}\right)$ and find that limit
b) With $a \geq 0$, prove that there exist a finite limit of $\left(u_{n}\right)$

2 Find all function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that:

$$
f\left(\frac{f(x)}{x}+y\right)=1+f(y), \quad \forall x, y \in \mathbb{R}^{+} .
$$

3 Let $A B C$ be a triangle. Point E, F moves on the opposite ray of $B A, C A$ such that $B F=C E$. Let M, N be the midpoint of $B E, C F$. BF cuts $C E$ at D
a) Suppost that I is the circumcenter of $(D B E)$ and J is the circumcenter of $(D C F)$, Prove that $M N \| I J$
b) Let K be the midpoint of $M N$ and H be the orthocenter of triangle $A E F$. Prove that when E varies on the opposite ray of $B A, H K$ go through a fixed point

4 For every pair of positive integers (n, m) with $n<m$, denote $s(n, m)$ be the number of positive integers such that the number is in the range $[n, m]$ and the number is coprime with m. Find all positive integers $m \geq 2$ such that m satisfy these condition:
i) $\frac{s(n, m)}{m-n} \geq \frac{s(1, m)}{m}$ for all $n=1,2, \ldots, m-1$;
ii) $2022^{m}+1$ is divisible by m^{2}

- Day 2

1 Consider 2 non-constant polynomials $P(x), Q(x)$, with nonnegative coefficients. The coefficients of $P(x)$ is not larger than 2021 and $Q(x)$ has at least one coefficient larger than 2021. Assume that $P(2022)=Q(2022)$ and $P(x), Q(x)$ has a root $\frac{p}{q} \neq 0(p, q \in \mathbb{Z},(p, q)=1)$. Prove that $|p|+n|q| \leq Q(n)-P(n)$ for all $n=1,2, \ldots, 2021$

2 We are given 4 similar dices. Denote $x_{i}\left(1 \leq x_{i} \leq 6\right)$ be the number of dots on a face appearing on the i-th dice $1 \leq i \leq 4$
a) Find the numbers of ($x_{1}, x_{2}, x_{3}, x_{4}$)
b) Find the probability that there is a number x_{j} such that x_{j} is equal to the sum of the other 3
numbers
c) Find the probability that we can divide $x_{1}, x_{2}, x_{3}, x_{4}$ into 2 groups has the same sum

3 Let $A B C$ be an acute triangle, B, C fixed, A moves on the big arc $B C$ of $(A B C)$. Let O be the circumcenter of $(A B C)(B, O, C$ are not collinear, $A B \neq A C),(I)$ is the incircle of triangle $A B C$. (I) tangents to $B C$ at D. Let I_{a} be the A-excenter of triangle $A B C . I_{a} D$ cuts $O I$ at L. Let E lies on (I) such that $D E \| A I$.
a) $L E$ cuts $A I$ at F. Prove that $A F=A I$.
b) Let M lies on the circle (J) go through I_{a}, B, C such that $I_{a} M \| A D$. $M D$ cuts (J) again at N. Prove that the midpoint T of $M N$ lies on a fixed circle.

