AoPS Community

Sharygin Geometry Olympiad 2022

www.artofproblemsolving.com/community/c3005618
by parmenides51, MatBoy-123, sanyalarnab, Marinchoo, Ineis1, Tintarn, p.lazarov06, Behanorm_rifghcky, VicKmath7

- \quad First (Correspondence) Round

1 Let O and H be the circumcenter and the orthocenter respectively of triangle $A B C$. Itis known that $B H$ is the bisector of angle $A B O$. The line passing through O and parallel to $A B$ meets $A C$ at K. Prove that $A H=A K$

2 Let $A B C D$ be a curcumscribed quadrilateral with incenter I, and let O_{1}, O_{2} be the circumcenters of triangles $A I D$ and $C I D$. Prove that the circumcenter of triangle $O_{1} I O_{2}$ lies on the bisector of angle $A B C$

3 Let $C D$ be an altitude of right-angled triangle $A B C$ with $\angle C=90$. Regular triangles $A E D$ and $C F D$ are such that E lies on the same side from $A B$ as C, and F lies on the same side from $C D$ as B. The line $E F$ meets $A C$ at L. Prove that $F L=C L+L D$

4 Let $A A_{1}, B B_{1}, C C_{1}$ be the altitudes of acute angled triangle $A B C . A_{2}$ be the touching point of the incircle of triangle $A B_{1} C_{1}$ with $B_{1} C_{1}$, points B_{2}, C_{2} be defined similarly. Prove that the lines $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2}$ concur.

5 Let the diagonals of cyclic quadrilateral $A B C D$ meet at point P. The line passing through P and perpendicular to $P D$ meets $A D$ at point D_{1}, a point A_{1} is defined similarly. Prove that the tangent at P to the circumcircle of triangle $D_{1} P A_{1}$ is parallel to $B C$.

6 The incircle and the excircle of triangle $A B C$ touch the side $A C$ at points P and Q respectively. The lines $B P$ and $B Q$ meet the circumcircle of triangle $A B C$ for the second time at points P^{\prime} and Q^{\prime} respectively.
Prove that

$$
P P^{\prime}>Q Q^{\prime}
$$

7 A square with center F was constructed on the side $A C$ of triangle $A B C$ outside it. After this, everything was erased except F and the midpoints N, K of sides $B C, A B$.
Restore the triangle.
8 Points P, Q, R lie on the sides $A B, B C, C A$ of triangle $A B C$ in such a way that $A P=P R, C Q=$ $Q R$. Let H be the orthocenter of triangle $P Q R$, and O be the circumcenter of triangle $A B C$.

Prove that

$$
O H \| A C
$$

9 The sides $A B, B C, C D$ and $D A$ of quadrilateral $A B C D$ touch a circle with center I at points K, L, M and N respectively. Let P be an arbitrary point of line $A I$. Let $P K$ meet $B I$ at point $Q, Q L$ meet $C I$ at point R, and $R M$ meet $D I$ at point S.
Prove that P, N and S are collinear.
10 Let ω_{1} be the circumcircle of triangle $A B C$ and O be its circumcenter. A circle ω_{2} touches the sides $A B, A C$, and touches the arc $B C$ of ω_{1} at point K. Let I be the incenter of $A B C$. Prove that the line $O I$ contains the symmedian of triangle $A I K$.

11 Let $A B C$ be a triangle with $\angle A=60^{\circ}$ and T be a point such that $\angle A T B=\angle B T C=\angle A T C$. A circle passing through B, C and T meets $A B$ and $A C$ for the second time at points K and L.Prove that the distances from K and L to $A T$ are equal.

12 Let K, L, M, N be the midpoints of sides $B C, C D, D A, A B$ respectively of a convex quadrilateral $A B C D$. The common points of segments $A K, B L, C M, D N$ divide each of them into three parts. It is known that the ratio of the length of the medial part to the length of the whole segment is the same for all segments. Does this yield that $A B C D$ is a parallelogram?

13 Eight points in a general position are given in the plane. The areas of all 56 triangles with vertices at these points are written in a row. Prove that it is possible to insert the symbols "+" and "-" between them in such a way that the obtained sum is equal to zero.

14 A triangle $A B C$ is given. Let C^{\prime} and C_{a}^{\prime} be the touching points of sideline $A B$ with the incircle and with the excircle touching the side $B C$. Points $C_{b}^{\prime}, C_{c}^{\prime}, A^{\prime}, A_{a}^{\prime}, A_{b}^{\prime}, A_{c}^{\prime}, B^{\prime}, B_{a}^{\prime}, B_{b}^{\prime}, B_{c}^{\prime}$ are defined similarly. Consider the lengths of 12 altitudes of triangles $A^{\prime} B^{\prime} C^{\prime}, A_{a}^{\prime} B_{a}^{\prime} C_{a}^{\prime}, A_{b}^{\prime} B_{b}^{\prime} C_{b}^{\prime}, A_{c}^{\prime} B_{c}^{\prime} C_{c}^{\prime}$.
(a) (8-9) Find the maximal number of different lengths.
(b) (10-11) Find all possible numbers of different lengths.

15 A line l parallel to the side $B C$ of triangle $A B C$ touches its incircle and meets its circumcircle at points D and E. Let I be the incenter of $A B C$. Prove that $A I^{2}=A D \cdot A E$.

16 Let $A B C D$ be a cyclic quadrilateral, $E=A C \cap B D, F=A D \cap B C$. The bisectors of angles $A F B$ and $A E B$ meet $C D$ at points X, Y. Prove that A, B, X, Y are concyclic.

17 Let a point P lie inside a triangle $A B C$. The rays starting at P and crossing the sides $B C, A C$, $A B$ under the right angle meet the circumcircle of $A B C$ at A_{1}, B_{1}, C_{1} respectively. It is known that lines $A A_{1}, B B_{1}, C C_{1}$ concur at point Q. Prove that all such lines $P Q$ concur.

AoPS Community

2022 Sharygin Geometry Olympiad

18 The products of the opposite sidelengths of a cyclic quadrilateral $A B C D$ are equal. Let B^{\prime} be the reflection of B about $A C$. Prove that the circle passing through A, B^{\prime}, D touches $A C$

19 Let I be the incenter of triangle $A B C$, and K be the common point of $B C$ with the external bisector of angle A. The line $K I$ meets the external bisectors of angles B and C at points X and Y. Prove that $\angle B A X=\angle C A Y$

20 Let O, I be the circumcenter and the incenter of $\triangle A B C ; R, r$ be the circumradius and the inradius; D be the touching point of the incircle with $B C$; and N be an arbitrary point of segment $I D$. The perpendicular to $I D$ at N meets the circumcircle of $A B C$ at points X and Y. Let O_{1} be the circumcircle of $\triangle X I Y$.

Find the product $O O_{1} \cdot I N$.
21 The circumcenter O, the incenter I, and the midpoint M of a diagonal of a bicentral quadrilateral were marked. After this the quadrilateral was erased. Restore it.

22 Chords $A_{1} A_{2}, A_{3} A_{4}, A_{5} A_{6}$ of a circle Ω concur at point O. Let B_{i} be the second common point of Ω and the circle with diameter $O A_{i}$. Prove that chords $B_{1} B_{2}, B_{3} B_{4}, B_{5} B_{6}$ concur.

23 An ellipse with focus F is given. Two perpendicular lines passing through F meet the ellipse at four points. The tangents to the ellipse at these points form a quadrilateral circumscribed around the ellipse. Prove that this quadrilateral is inscribed into a conic with focus F

24 Let $O A B C D E F$ be a hexagonal pyramid with base $A B C D E F$ circumscribed around a sphere ω. The plane passing through the touching points of ω with faces $O F A, O A B$ and $A B C D E F$ meets $O A$ at point A_{1}, points $B_{1}, C_{1}, D_{1}, E_{1}$ and F_{1} are defined similarly. Let ℓ, m and n be the lines $A_{1} D_{1}, B_{1} E_{1}$ and $C_{1} F_{1}$ respectively. It is known that ℓ and m are coplanar, also m and n are coplanar. Prove that ℓ and n are coplanar.

- Final Round
8.1 Let $A B C D$ be a convex quadrilateral with $\angle B A D=2 \angle B C D$ and $A B=A D$. Let P be a point such that $A B C P$ is a parallelogram. Prove that $C P=D P$.
8.2 Let $A B C D$ be a right-angled trapezoid and M be the midpoint of its greater lateral side $C D$. Circumcircles ω_{1} and ω_{2} of triangles $B C M$ and $A M D$ meet for the second time at point E. Let $E D$ meet ω_{1} at point F, and $F B$ meet $A D$ at point G. Prove that $G M$ bisects angle $B G D$.
8.3 A circle ω and a point P not lying on it are given. Let $A B C$ be an arbitrary equilateral triangle inscribed into ω and $A^{\prime}, B^{\prime}, C^{\prime}$ be the projections of P to $B C, C A, A B$. Find the locus of centroids of triangles $A^{\prime} B^{\prime} C^{\prime}$.

AoPS Community

2022 Sharygin Geometry Olympiad

8.4 Let $A B C D$ be a cyclic quadrilateral, O be its circumcenter, P be a common points of its diagonals, and M, N be the midpoints of $A B$ and $C D$ respectively. A circle $O P M$ meets for the second time segments $A P$ and $B P$ at points A_{1} and B_{1} respectively and a circle $O P N$ meets for the second time segments $C P$ and $D P$ at points C_{1} and D_{1} respectively. Prove that the areas of quadrilaterals $A A_{1} B_{1} B$ and $C C_{1} D_{1} D$ are equal.
8.5 An incircle of triangle $A B C$ touches $A B, B C, A C$ at points C_{1}, A_{1}, B_{1} respectively. Let A^{\prime} be the reflection of A_{1} about $B_{1} C_{1}$, point C^{\prime} is defined similarly. Lines $A^{\prime} C_{1}$ and $C^{\prime} A_{1}$ meet at point D. Prove that $B D \| A C$.
8.6 Two circles meeting at points A, B and a point O lying outside them are given. Using a compass and a ruler construct a ray with origin O meeting the first circle at point C and the second one at point D in such a way that the ratio $O C: O D$ be maximal.
8.7 Ten points on a plane a such that any four of them lie on the boundary of some square. Is obligatory true that all ten points lie on the boundary of some square?
8.8 An isosceles trapezoid $A B C D(A B=C D)$ is given. A point P on its circumcircle is such that segments $C P$ and $A D$ meet at point Q. Let L be tha midpoint of $Q D$. Prove that the diagonal of the trapezoid is not greater than the sum of distances from the midpoints of the lateral sides to ana arbitrary point of line $P L$.
9.1 Let $B H$ be an altitude of right angled triangle $A B C\left(\angle B=90^{\circ}\right)$. An excircle of triangle $A B H$ opposite to B touches $A B$ at point A_{1}; a point C_{1} is defined similarly. Prove that $A C / / A_{1} C_{1}$.
9.2 Let circles s_{1} and s_{2} meet at points A and B. Consider all lines passing through A and meeting the circles for the second time at points P_{1} and P_{2} respectively. Construct by a compass and a ruler a line such that $A P_{1} . A P_{2}$ is maximal.
9.3 A medial line parallel to the side $A C$ of triangle $A B C$ meets its circumcircle at points at X and Y. Let I be the incenter of triangle $A B C$ and D be the midpoint of arc $A C$ not containing B.A point L lie on segment $D I$ in such a way that $D L=B I / 2$. Prove that $\angle I X L=\angle I Y L$.
9.4 Let $A B C$ be an isosceles triangle with $A B=A C, P$ be the midpoint of the minor arc $A B$ of its circumcircle, and Q be the midpoint of $A C$. A circumcircle of triangle $A P Q$ centered at O meets $A B$ for the second time at point K. Prove that lines $P O$ and $K Q$ meet on the bisector of angle $A B C$.
9.5 Chords $A B$ and $C D$ of a circle ω meet at point E in such a way that $A D=A E=E B$. Let F be a point of segment $C E$ such that $E D=C F$. The bisector of angle $A F C$ meets an $\operatorname{arc} D A C$ at point P. Prove that A, E, F, and P are concyclic.
9.6 Lateral sidelines $A B$ and $C D$ of a trapezoid $A B C D(A D>B C)$ meet at point P. Let Q be a point of segment $A D$ such that $B Q=C Q$. Prove that the line passing through the circumcenters of triangles $A Q C$ and $B Q D$ is perpendicular to $P Q$.
9.7 Let H be the orthocenter of an acute-angled triangle $A B C$. The circumcircle of triangle $A H C$ meets segments $A B$ and $B C$ at points P and Q. Lines $P Q$ and $A C$ meet at point R. A point K lies on the line $P H$
in such a way that $\angle K A C=90^{\circ}$. Prove that $K R$ is perpendicular to one of the medians of triangle $A B C$.
9.8 Several circles are drawn on the plane and all points of their intersection or touching are marked. Is it possible that each circle contains exactly five marked points and each point belongs to exactly five circles?
10.1 $\quad A_{1} A_{2} A_{3} A_{4}$ and $B_{1} B_{2} B_{3} B_{4}$ are two squares with their vertices arranged clockwise. The perpendicular bisector of segment $A_{1} B_{1}, A_{2} B_{2}, A_{3} B_{3}, A_{4} B_{4}$ and the perpendicular bisector of segment $A_{2} B_{2}, A_{3} B_{3}, A_{4} B_{4}, A_{1} B_{1}$ intersect at point P, Q, R, S respectively. Show that: $P R \perp Q S$.
10.2 Let $A B C D$ be a convex quadrilateral. The common external tangents to circles $(A B C)$ and $(A C D)$ meet at point E, the common external tangents to circles $(A B D)$ and $(B C D)$ meet at point F. Let F lie on $A C$, prove that E lies on $B D$.
10.3 A line meets a segment $A B$ at point C. Which is the maximal number of points X of this line such that one of angles $A X C$ and $B X C$ is equlal to a half of the second one?
10.4 Let $A B C D$ be a convex quadrilateral with $\angle B=\angle D$. Prove that the midpoint of $B D$ lies on the common internal tangent to the incircles of triangles $A B C$ and $A C D$.
10.5 Let $A B$ and $A C$ be the tangents from a point A to a circle Ω. Let M be the midpoint of $B C$ and P be an arbitrary point on this segment. A line $A P$ meets Ω at points D and E. Prove that the common external tangents to circles $M D P$ and $M P E$ meet on the midline of triangle $A B C$.
10.6 Let O, I be the circumcenter and the incenter of triangle $A B C, P$ be an arbitrary point on segment $O I, P_{A}, P_{B}$, and P_{C} be the second common points of lines $P A, P B$, and $P C$ with the circumcircle of triangle $A B C$. Prove that the bisectors of angles $B P_{A} C, C P_{B} A$, and $A P_{C} B$ concur at a point lying on $O I$.
10.7 Several circles are drawn on the plane and all points of their meeting or touching are marked. May be that each circle contains exactly four marked points and exactly four marked points lie on each circle?
10.8 Let $A B C A^{\prime} B^{\prime} C^{\prime}$ be a centrosymmetric octahedron (vertices A and A^{\prime}, B and B^{\prime}, C and C^{\prime} are opposite) such that the sums of four planar angles equal 240° for each vertex. The Torricelli
points T_{1} and T_{2} of triangles $A B C$ and $A^{\prime} B C$ are marked. Prove that the distances from T_{1} and T_{2} to $B C$ are equal.

