

AoPS Community

IMC 2016

www.artofproblemsolving.com/community/c300585

by j___d

- Day 1
- Let f : [a,b] → ℝ be continuous on [a,b] and differentiable on (a,b). Suppose that f has infinitely many zeros, but there is no x ∈ (a, b) with f(x) = f'(x) = 0.
 (a) Prove that f(a)f(b) = 0.
 (b) Give an example of such a function on [0, 1].

(Proposed by Alexandr Bolbot, Novosibirsk State University)

2 Let k and n be positive integers. A sequence (A_1, \ldots, A_k) of $n \times n$ real matrices is *preferred* by Ivan the Confessor if $A_i^2 \neq 0$ for $1 \le i \le k$, but $A_iA_j = 0$ for $1 \le i, j \le k$ with $i \ne j$. Show that $k \le n$ in all preferred sequences, and give an example of a preferred sequence with k = n for each n.

(Proposed by Fedor Petrov, St. Petersburg State University)

3 Let *n* be a positive integer. Also let a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n be real numbers such that $a_i + b_i > 0$ for $i = 1, 2, \ldots, n$. Prove that

$$\sum_{i=1}^{n} \frac{a_i b_i - b_i^2}{a_i + b_i} \le \frac{\sum_{i=1}^{n} a_i \cdot \sum_{i=1}^{n} b_i - \left(\sum_{i=1}^{n} b_i\right)^2}{\sum_{i=1}^{n} (a_i + b_i)}$$

(Proposed by Daniel Strzelecki, Nicolaus Copernicus University in Toru, Poland)

Let n ≥ k be positive integers, and let F be a family of finite sets with the following properties:
(i) F contains at least ⁽ⁿ⁾/_k + 1 distinct sets containing exactly k elements;
(ii) for any two sets A, B ∈ F, their union A ∪ B also belongs to F.
Prove that F contains at least three sets with at least n elements.

(Proposed by Fedor Petrov, St. Petersburg State University)

5 Let S_n denote the set of permutations of the sequence (1, 2, ..., n). For every permutation $\pi = (\pi_1, ..., \pi_n) \in S_n$, let $inv(\pi)$ be the number of pairs $1 \le i < j \le n$ with $\pi_i > \pi_j$; i. e. the number of inversions in π . Denote by f(n) the number of permutations $\pi \in S_n$ for which $inv(\pi)$ is divisible by n + 1.

2016 IMC

AoPS Community

2016 IMC

Prove that there exist infinitely many primes p such that $f(p-1) > \frac{(p-1)!}{p}$, and infinitely many primes p such that $f(p-1) < \frac{(p-1)!}{p}$.

(Proposed by Fedor Petrov, St. Petersburg State University)

– Day 2

1 Let $(x_1, x_2, ...)$ be a sequence of positive real numbers satisfying $\sum_{n=1}^{\infty} \frac{x_n}{2n-1} = 1$. Prove that

$$\sum_{k=1}^{\infty} \sum_{n=1}^{k} \frac{x_n}{k^2} \le 2.$$

(Proposed by Gerhard J. Woeginger, The Netherlands)

2 Today, Ivan the Confessor prefers continuous functions $f : [0, 1] \to \mathbb{R}$ satisfying $f(x) + f(y) \ge |x - y|$ for all pairs $x, y \in [0, 1]$. Find the minimum of $\int_0^1 f$ over all preferred functions.

(Proposed by Fedor Petrov, St. Petersburg State University)

3 Let *n* be a positive integer, and denote by \mathbb{Z}_n the ring of integers modulo *n*. Suppose that there exists a function $f : \mathbb{Z}_n \to \mathbb{Z}_n$ satisfying the following three properties:

(i) $f(x) \neq x$, (ii) f(f(x)) = x,

(iii) f(f(x+1)+1) + 1) = x for all $x \in \mathbb{Z}_n$.

Prove that $n \equiv 2 \pmod{4}$.

(Proposed by Ander Lamaison Vidarte, Berlin Mathematical School, Germany)

4 Let *k* be a positive integer. For each nonnegative integer *n*, let f(n) be the number of solutions $(x_1, \ldots, x_k) \in \mathbb{Z}^k$ of the inequality $|x_1| + \ldots + |x_k| \le n$. Prove that for every $n \ge 1$, we have $f(n-1)f(n+1) \le f(n)^2$.

(Proposed by Esteban Arreaga, Renan Finder and Jos Madrid, IMPA, Rio de Janeiro)

5 Let A be a $n \times n$ complex matrix whose eigenvalues have absolute value at most 1. Prove that

$$||A^n|| \le \frac{n}{\ln 2} ||A||^{n-1}.$$

(Here $||B|| = \sup_{||x|| \le 1} ||Bx||$ for every $n \times n$ matrix B and $||x|| = \sqrt{\sum_{i=1}^{n} |x_i|^2}$ for every complex vector $x \in \mathbb{C}^n$.)

AoPS Community

(Proposed by Ian Morris and Fedor Petrov, St. Petersburg State University)

Act of Problem Solving is an ACS WASC Accredited School.