AoPS Community

IMC 2016

www.artofproblemsolving.com/community/c300585
by j_-_d

- Day 1

1 Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b). Suppose that f has infinitely many zeros, but there is no $x \in(a, b)$ with $f(x)=f^{\prime}(x)=0$.
(a) Prove that $f(a) f(b)=0$.
(b) Give an example of such a function on $[0,1]$.
(Proposed by Alexandr Bolbot, Novosibirsk State University)
2 Let k and n be positive integers. A sequence $\left(A_{1}, \ldots, A_{k}\right)$ of $n \times n$ real matrices is preferred by Ivan the Confessor if $A_{i}^{2} \neq 0$ for $1 \leq i \leq k$, but $A_{i} A_{j}=0$ for $1 \leq i, j \leq k$ with $i \neq j$. Show that $k \leq n$ in all preferred sequences, and give an example of a preferred sequence with $k=n$ for each n.
(Proposed by Fedor Petrov, St. Petersburg State University)
3 Let n be a positive integer. Also let $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be real numbers such that $a_{i}+b_{i}>0$ for $i=1,2, \ldots, n$. Prove that

$$
\sum_{i=1}^{n} \frac{a_{i} b_{i}-b_{i}^{2}}{a_{i}+b_{i}} \leq \frac{\sum_{i=1}^{n} a_{i} \cdot \sum_{i=1}^{n} b_{i}-\left(\sum_{i=1}^{n} b_{i}\right)^{2}}{\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)}
$$

(Proposed by Daniel Strzelecki, Nicolaus Copernicus University in Toru, Poland)
4 Let $n \geq k$ be positive integers, and let \mathcal{F} be a family of finite sets with the following properties:
(i) \mathcal{F} contains at least $\binom{n}{k}+1$ distinct sets containing exactly k elements;
(ii) for any two sets $A, B \in \mathcal{F}$, their union $A \cup B$ also belongs to \mathcal{F}.

Prove that \mathcal{F} contains at least three sets with at least n elements.
(Proposed by Fedor Petrov, St. Petersburg State University)
5 Let S_{n} denote the set of permutations of the sequence $(1,2, \ldots, n)$. For every permutation $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right) \in S_{n}$, let $\operatorname{inv}(\pi)$ be the number of pairs $1 \leq i<j \leq n$ with $\pi_{i}>\pi_{j}$; i. e. the number of inversions in π. Denote by $f(n)$ the number of permutations $\pi \in S_{n}$ for which $\operatorname{inv}(\pi)$ is divisible by $n+1$.

Prove that there exist infinitely many primes p such that $f(p-1)>\frac{(p-1) \text { ! }}{p}$, and infinitely many primes p such that $f(p-1)<\frac{(p-1)!}{p}$.
(Proposed by Fedor Petrov, St. Petersburg State University)

- Day 2

1 Let $\left(x_{1}, x_{2}, \ldots\right)$ be a sequence of positive real numbers satisfying $\sum_{n=1}^{\infty} \frac{x_{n}}{2 n-1}=1$. Prove that

$$
\sum_{k=1}^{\infty} \sum_{n=1}^{k} \frac{x_{n}}{k^{2}} \leq 2 .
$$

(Proposed by Gerhard J. Woeginger, The Netherlands)
2 Today, Ivan the Confessor prefers continuous functions $f:[0,1] \rightarrow \mathbb{R}$ satisfying $f(x)+f(y) \geq$ $|x-y|$ for all pairs $x, y \in[0,1]$. Find the minimum of $\int_{0}^{1} f$ over all preferred functions.
(Proposed by Fedor Petrov, St. Petersburg State University)
3 Let n be a positive integer, and denote by \mathbb{Z}_{n} the ring of integers modulo n. Suppose that there exists a function $f: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ satisfying the following three properties:
(i) $f(x) \neq x$,
(ii) $f(f(x))=x$,
(iii) $f(f(f(x+1)+1)+1)=x$ for all $x \in \mathbb{Z}_{n}$.

Prove that $n \equiv 2(\bmod 4)$.
(Proposed by Ander Lamaison Vidarte, Berlin Mathematical School, Germany)
4 Let k be a positive integer. For each nonnegative integer n, let $f(n)$ be the number of solutions $\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{Z}^{k}$ of the inequality $\left|x_{1}\right|+\ldots+\left|x_{k}\right| \leq n$. Prove that for every $n \geq 1$, we have $f(n-1) f(n+1) \leq f(n)^{2}$.
(Proposed by Esteban Arreaga, Renan Finder and Jos Madrid, IMPA, Rio de Janeiro)
$5 \quad$ Let A be a $n \times n$ complex matrix whose eigenvalues have absolute value at most 1 . Prove that

$$
\left\|A^{n}\right\| \leq \frac{n}{\ln 2}\|A\|^{n-1}
$$

(Here $\|B\|=\sup _{\|x\| \leq 1}\|B x\|$ for every $n \times n$ matrix B and $\|x\|=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}$ for every complex vector $x \in \mathbb{C}^{n}$.)
(Proposed by lan Morris and Fedor Petrov, St. Petersburg State University)

