

AoPS Community

India National Olympiad 2022

www.artofproblemsolving.com/community/c3006124 by Flying-Man, hellomath010118, N1RAV

- 1 Let *D* be an interior point on the side *BC* of an acute-angled triangle *ABC*. Let the circumcircle of triangle *ADB* intersect *AC* again at $E(\neq A)$ and the circumcircle of triangle *ADC* intersect *AB* again at $F(\neq A)$. Let *AD*, *BE*, and *CF* intersect the circumcircle of triangle *ABC* again at $D_1(\neq A)$, $E_1(\neq B)$ and $F_1(\neq C)$, respectively. Let *I* and I_1 be the incentres of triangles *DEF* and $D_1E_1F_1$, respectively. Prove that *E*, *F*, *I*, *I*₁ are concyclic.
- **2** Find all natural numbers *n* for which there is a permutation σ of $\{1, 2, ..., n\}$ that satisfies:

$$\sum_{i=1}^{n} \sigma(i) (-2)^{i-1} = 0$$

3 For a positive integer N, let T(N) denote the number of arrangements of the integers $1, 2, \dots N$ into a sequence $a_1, a_2, \dots a_N$ such that $a_i > a_{2i}$ for all $i, 1 \le i < 2i \le N$ and $a_i > a_{2i+1}$ for all $i, 1 \le i < 2i + 1 \le N$. For example, T(3) is 2, since the possible arrangements are 321 and 312 (a) Find T(7)(b) If K is the largest non-negative integer so that 2^K divides $T(2^n-1)$, show that $K = 2^n - n - 1$. (c) Find the largest non-negative integer K so that 2^K divides $T(2^n + 1)$

