AoPS Community

BMT Geometry from Team, Individual, General Rounds

geometry problems from Team, Individual and General Rounds from Berkeley Math Tournament for High School

www.artofproblemsolving.com/community/c3006130
by parmenides51, IsabeltheCat, somepersonoverhere, mathisawesome

- \quad Team Round
2012.3 Let $A B C$ be a triangle with side lengths $A B=2011, B C=2012, A C=2013$. Create squares $S_{1}=A B B^{\prime} A^{\prime \prime}, S_{2}=A C C^{\prime \prime} A^{\prime}$, and $S_{3}=C B B^{\prime \prime} C^{\prime}$ using the sides $A B, A C, B C$ respectively, so that the side $B^{\prime} A^{\prime \prime}$ is on the opposite side of $A B$ from C, and so forth. Let square S_{4} have side length $A^{\prime \prime} A^{\prime}$, square S_{5} have side length $C^{\prime \prime} C^{\prime}$, and square S_{6} have side length $B^{\prime \prime} B^{\prime}$. Let $A\left(S_{i}\right)$ be the area of square S_{i}. Compute $\frac{A\left(S_{4}\right)+A\left(S_{5}\right)+A\left(S_{6}\right)}{A\left(S_{1}\right)+A\left(S_{2}\right)+A\left(S_{3}\right)}$?
2012.6 A circle with diameter $A B$ is drawn, and the point P is chosen on segment $A B$ so that $\frac{A P}{A B}=\frac{1}{42}$. Two new circles a and b are drawn with diameters $A P$ and $P B$ respectively. The perpendicular line to $A B$ passing through P intersects the circle twice at points S and T. Two more circles s and t are drawn with diameters $S P$ and $S T$ respectively. For any circle ω let $A(\omega)$ denote the area of the circle. What is $\frac{A(s)+A(t)}{A(a)+A(b)}$?
2013.5 Circle C_{1} has center O and radius $O A$, and circle C_{2} has diameter $O A . A B$ is a chord of circle C_{1} and $B D$ may be constructed with D on $O A$ such that $B D$ and $O A$ are perpendicular. Let C be the point where C_{2} and $B D$ intersect. If $A C=1$, find $A B$.
2013.8 A parabola has focus F and vertex V, where $V F=10$. Let $A B$ be a chord of length 100 that passes through F. Determine the area of $\triangle V A B$.
2014.4 In a right triangle, the altitude from a vertex to the hypotenuse splits the hypotenuse into two segments of lengths a and b. If the right triangle has area T and is inscribed in a circle of area C, find $a b$ in terms of T and C.
2014.7 Let $V W X Y Z$ be a square pyramid with vertex V with height 1 , and with the unit square as its base. Let $S T A N F U R D$ be a cube, such that face $F U R D$ lies in the same plane as and shares the same center as square face $W X Y Z$. Furthermore, all sides of $F U R D$ are parallel to the sides of $W X Y Z$. Cube $S T A N F U R D$ has side length s such that the volume that lies inside the cube but outside the square pyramid is equal to the volume that lies inside the square pyramid but outside the cube. What is the value of s ?
2014.13 Let $A B C$ be a triangle with $A B=16, A C=10, B C=18$. Let D be a point on $A B$ such that $4 A D=A B$ and let E be the foot of the angle bisector from B onto $A C$. Let P be the intersection of $C D$ and $B E$. Find the area of the quadrilateral $A D P E$.

AoPS Community

BMT Geometry from Team, Individual, General Rounds

2015.4 Triangle $A B C$ has side lengths $A B=3, B C=4$, and $C D=5$. Draw line ℓ_{A} such that ℓ_{A} is parallel to $B C$ and splits the triangle into two polygons of equal area. Define lines ℓ_{B} and ℓ_{C} analogously. The intersection points of ℓ_{A}, ℓ_{B}, and ℓ_{C} form a triangle. Determine its area.
2015.7 $X_{1}, X_{2}, \ldots, X_{2015}$ are 2015 points in the plane such that for all $1 \leq i, j \leq 2015$, the line segment $X_{i} X_{i+1}=X_{j} X_{j+1}$ and angle $\angle X_{i} X_{i+1} X_{i+2}=\angle X_{j} X_{j+1} X_{j+2}$ (with cyclic indices such that $X_{2016}=X_{1}$ and $X_{2017}=X_{2}$). Given fixed X_{1} and X_{2}, determine the number of possible locations for X_{3}.
2015.9 Find the side length of the largest square that can be inscribed in the unit cube.
2015.16 Five points A, B, C, D, and E in three-dimensional Euclidean space have the property that $A B=B C=C D=D E=E A=1$ and $\angle A B C=\angle B C D=\angle C D E=\angle D E A=90^{\circ}$. Find all possible $\cos (\angle E A B)$.
2016.2 Jennifer wants to do origami, and she has a square of side length 1 . However, she would prefer to use a regular octagon for her origami, so she decides to cut the four corners of the square to get a regular octagon. Once she does so, what will be the side length of the octagon Jennifer obtains?
2016.5 Let $A B C$ be a right triangle with $A B=B C=2$. Let $A C D$ be a right triangle with angle $\angle D A C=$ 30 degrees and $\angle D C A=60$ degrees. Given that $A B C$ and $A C D$ do not overlap, what is the area of triangle $B C D$?
2016.10 What is the smallest possible perimeter of a triangle with integer coordinate vertices, area $\frac{1}{2}$, and no side parallel to an axis?
2016.11 Circles C_{1} and C_{2} intersect at points X and Y. Point A is a point on C_{1} such that the tangent line with respect to C_{1} passing through A intersects C_{2} at B and C, with A closer to B than C, such that $2016 \cdot A B=B C$. Line $X Y$ intersects line $A C$ at D. If circles C_{1} and C_{2} have radii of 20 and 16 , respectively, find $\sqrt{1+B C / B D}$.
2016.12 Consider a solid hemisphere of radius 1 . Find the distance from its center of mass to the base.
2017.4 2 darts are thrown randomly at a circular board with center O, such that each dart has an equal probability of hitting any point on the board. The points at which they land are marked A and B. What is the probability that $\angle A O B$ is acute?
2017.6 The center of a square of side length 1 is placed uniformly at random inside a circle of radius 1. Given that we are allowed to rotate the square about its center, what is the probability that the entire square is contained within the circle for some orientation of the square?

AoPS Community

BMT Geometry from Team, Individual, General Rounds

2017.9 Let $A B=10$ be a diameter of circle P. Pick point C on the circle such that $A C=8$. Let the circle with center O be the incircle of $\triangle A B C$. Extend line $A O$ to intersect circle P again at D. Find the length of $B D$.
2017.13 4 equilateral triangles of side length 1 are drawn on the interior of a unit square, each one of which shares a side with one of the 4 sides of the unit square. What is the common area enclosed by all 4 equilateral triangles?
2017.15 In triangle $A B C$, the angle at C is 30°, side $B C$ has length 4 , and side $A C$ has length 5. Let P be the point such that triangle $A B P$ is equilateral and non-overlapping with triangle $A B C$. Find the distance from C to P.
2018.1 A circle with radius 5 is inscribed in a right triangle with hypotenuse 34 as shown below. What is the area of the triangle? Note that the diagram is not to scale.
2018.9 Circles A, B, and C are externally tangent circles. Line $P Q$ is drawn such that $P Q$ is tangent to A at P, tangent to B at Q, and does not intersect with C. Circle D is drawn such that it passes through the centers of A, B, and C. Let R be the point on D furthest from $P Q$. If A, B, and C have radii 3,2 , and 1, respectively, the area of triangle $P Q R$ can be expressed in the form of $a+b \sqrt{c}$, where a, b, and c are integers with c not divisible by any prime square. What is $a+b+c$?
2018.10 A rectangular prism has three distinct faces of area 24,30 , and 32 . The diagonals of each distinct face of the prism form sides of a triangle. What is the triangle's area?
2018.15 Let triangle $A B C$ have side lengths $A B=13, B C=14, A C=15$. Let I be the incenter of $A B C$. The circle centered at A of radius $A I$ intersects the circumcircle of $A B C$ at H and J. Let L be a point that lies on both the incircle of $A B C$ and line $H J$. If the minimal possible value of $A L$ is \sqrt{n}, where $n \in \mathbb{Z}$, find n.
2019.3 A cylinder with radius 5 and height 1 is rolling on the (unslanted) floor. Inside the cylinder, there is water that has constant height $\frac{15}{2}$ as the cylinder rolls on the floor. What is the volume of the water?
2019.13 Triangle $\triangle A B C$ has $A B=13, B C=14$, and $C A=15 . \triangle A B C$ has incircle γ and circumcircle ω. γ has center at I. Line $A I$ is extended to hit ω at P. What is the area of quadrilateral $A B P C$?
2019.14 A regular hexagon has positive integer side length. A laser is emitted from one of the hexagon's corners, and is reflected off the edges of the hexagon until it hits another corner. Let a be the distance that the laser travels. What is the smallest possible value of a^{2} such that $a>2019$? You need not simplify/compute exponents.
2020.3 An ant is at one corner of a unit cube. If the ant must travel on the box's surface, the shortest distance the ant must crawl to reach the opposite corner of the cube can be written in the form

AoPS Community

BMT Geometry from Team, Individual, General Rounds

\sqrt{a}, where a is a positive integer. Compute a.
2020.8 Let $A B C D$ be a unit square and let E and F be points inside $A B C D$ such that the line containing $\overline{E F}$ is parallel to $\overline{A B}$. Point E is closer to $\overline{A D}$ than point F is to $\overline{A D}$. The line containing $\overline{E F}$ also bisects the square into two rectangles of equal area. Suppose $[A E F B]=[D E F C]=$ $2[A E D]=2[B F C]$. The length of segment $\overline{E F}$ can be expressed as m / n, where m and n are relatively prime positive integers. Compute $m+n$.
2020.12 A hollow box (with negligible thickness) shaped like a rectangular prism has a volume of 108 cubic units. The top of the box is removed, exposing the faces on the inside of the box. What is the minimum possible value for the sum of the areas of the faces on the outside and inside of the box?
2020.14 In the star shaped figure below, if all side lengths are equal to 3 and the three largest angles of the figure are 210 degrees, its area can be expressed as $\frac{a \sqrt{b}}{c}$, where a, b, and c are positive integers such that a and c are relatively prime and that b is square-free. Compute $a+b+c$. https://cdn.artofproblemsolving.com/attachments/a/f/d16a78317b0298d6894c6bd62fbcd1a58943 png
2020.16 Let T be the answer to question 18. Rectangle $Z O M R$ has $Z O=2 T$ and $Z R=T$. Point B lies on segment $Z O, O^{\prime}$ lies on segment $O M$, and E lies on segment $R M$ such that $B R=B E=$ $E O^{\prime}$, and $\angle B E O^{\prime}=90^{\circ}$. Compute $2\left(Z O+O^{\prime} M+E R\right)$.

PS. You had better calculate it in terms of T.
2020.20 Non-degenerate quadrilateral $A B C D$ with $A B=A D$ and $B C=C D$ has integer side lengths, and $\angle A B C=\angle B C D=\angle C D A$. If $A B=3$ and $B \neq D$, how many possible lengths are there for $B C$?
2020.21 Let $\triangle A B C$ be a right triangle with legs $A B=6$ and $A C=8$. Let I be the incenter of $\triangle A B C$ and X be the other intersection of $A I$ with the circumcircle of $\triangle A B C$. Find $\overline{A I} \cdot \overline{I X}$.

- Individual Round
2012.6 Let ABCD be a cyclic quadrilateral, with $\mathrm{AB}=7, \mathrm{BC}=11, \mathrm{CD}=13$, and $\mathrm{DA}=17$. Let the incircle of $A B D$ hit $B D$ at R and the incircle of CBD hit $B D$ at S. What is $R S$?
2012.10 You are at one vertex of a equilateral triangle with side length 1 . All of the edges of the equilateral triangle will reflect the laser beam perfectly (angle of incidence is equal to angle of reflection). Given that the laser beam bounces off exactly 137 edges and returns to the original vertex without touching any other vertices, let M be the maximum possible distance the beam could have traveled, and m be the minimum possible distance the beam could have traveled. Find $M^{2}-m^{2}$.

AoPS Community

BMT Geometry from Team, Individual, General Rounds

2013.3 S-Corporation designs its logo by linking together 4 semicircles along the diameter of a unit circle. Find the perimeter of the shaded portion of the logo.
https://cdn.artofproblemsolving.com/attachments/8/6/f0eabd46f5f3a5806d49012b2f871a453b9e7 png
2013.4 Let $A B C D$ be a square with side length 2 , and let a semicircle with flat side $C D$ be drawn inside the square. Of the remaining area inside the square outside the semi-circle, the largest circle is drawn. What is the radius of this circle?
2013.6 Bubble Boy and Bubble Girl live in bubbles of unit radii centered at $(20,13)$ and $(0,10)$ respectively. Because Bubble Boy loves Bubble Girl, he wants to reach her as quickly as possible, but he needs to bring a gift; luckily, there are plenty of gifts along the x-axis. Assuming that Bubble Girl remains stationary, find the length of the shortest path Bubble Boy can take to visit the x-axis and then reach Bubble Girl (the bubble is a solid boundary, and anything the bubble can touch, Bubble Boy can touch too)
2013.12 Triangle $A B C$ satisfies the property that $\angle A=a \log x, \angle B=a \log 2 x$, and $\angle C=a \log 4 x$ radians, for some real numbers a and x. If the altitude to side $A B$ has length 8 and the altitude to side $B C$ has length 9 , find the area of $\triangle A B C$.
2013.14 Triangle $A B C$ has incircle O that is tangent to $A C$ at D. Let M be the midpoint of $A C$. E lies on $B C$ so that line $A E$ is perpendicular to $B O$ extended. If $A C=2013, A B=2014, D M=249$, find $C E$.
2013.15 Let $A B C D$ be a convex quadrilateral with $\angle A B D=\angle B C D, A D=1000, B D=2000, B C=$ 2001, and $D C=1999$. Point E is chosen on segment $D B$ such that $\angle A B D=\angle E C D$. Find $A E$.
2013.19 Equilateral triangle $A B C$ is inscribed in a circle. Chord $A D$ meets $B C$ at E. If $D E=2013$, how many scenarios exist such that both $D B$ and $D C$ are integers (two scenarios are different if $A B$ is different or $A D$ is different)?
2014.2 Suppose $\triangle A B C$ is similar to $\triangle D E F$, with A, B, and C corresponding to D, E, and F respectively. If $\overline{A B}=\overline{E F}, \overline{B C}=\overline{F D}$, and $\overline{C A}=\overline{D E}=2$, determine the area of $\triangle A B C$.
2014.8 Line segment $A B$ has length 4 and midpoint M. Let circle C_{1} have diameter $A B$, and let circle C_{2} have diameter $A M$. Suppose a tangent of circle C_{2} goes through point B to intersect circle C_{1} at N. Determine the area of triangle $A M N$.
2014.10 A plane intersects a sphere of radius 10 such that the distance from the center of the sphere to the plane is 9 . The plane moves toward the center of the bubble at such a rate that the increase in the area of the intersection of the plane and sphere is constant, and it stops once it reaches the center of the circle. Determine the distance from the center of the sphere to the plane after

AoPS Community

BMT Geometry from Team, Individual, General Rounds

two-thirds of the time has passed.
2014.11 Suppose x, y, and 1 are side lengths of a triangle T such that $x<1$ and $y<1$. Given x and y are chosen uniformly at random from all possible pairs (x, y), determine the probability that T is obtuse.
2014.12 Suppose four coplanar points A, B, C, and D satisfy $A B=3, B C=4, C A=5$, and $B D=6$. Determine the maximal possible area of $\triangle A C D$.
2014.13 A cylinder is inscribed within a sphere of radius 10 such that its volume is almost-half that of the sphere. If almost-half is defined such that the cylinder has volume $\frac{1}{2}+\frac{1}{250}$ times the sphere's volume, find the sum of all possible heights for the cylinder.
2014.17 A convex solid is formed in four-dimensional Euclidean space with vertices at the 24 possible permutations of $\{1,2,3,4\}$ (so $(1,2,3,4),(1,2,4,3)$, etc.). What is the product of the number of faces and edges of this solid?
2014.20 Suppose three circles of radius 5 intersect at a common point. If the three (other) pairwise intersections between the circles form a triangle of area 8, find the radius of the smallest possible circle containing all three circles.
2015.3 A quadrilateral $A B C D$ has a right angle at $\angle A B C$ and satisfies $A B=12, B C=9, C D=20$, and $D A=25$. Determine $B D^{2}$.
2015.7 In $\triangle A B C, \angle B=46^{\circ}$ and $\angle C=48^{\circ}$. A circle is inscribed in $\triangle A B C$ and the points of tangency are connected to form $P Q R$. What is the measure of the largest angle in $\triangle P Q R$?
2015.17 A circle intersects square $A B C D$ at points A, E, and F, where E lies on $A B$ and F lies on $A D$, such that $A E+A F=2(B E+D F)$. If the square and the circle each have area 1 , determine the area of the union of the circle and square.
2015.T1 Compute the surface area of a rectangular prism with side lengths $2,3,4$.
2016.3 Consider an equilateral triangle and square, both with area 1 . What is the product of their perimeters?
2016.4 Let $A B C$ have side lengths 3,4 , and 5 . Let P be a point inside $A B C$. What is the minimum sum of lengths of the altitudes from P to the side lengths of $A B C$?
2016.14 Three circles of radius 1 are inscribed in a square of side length s, such that the circles do not overlap or coincide with each other. What is the minimum s where such a configuration is possible?
2016.16 What is the radius of the largest sphere that fits inside the tetrahedron whose vertices are the points $(0,0,0),(1,0,0),(0,1,0),(0,0,1)$?
2016.17 Consider triangle $A B C$ in $x y$-plane where A is at the origin, B lies on the positive x-axis, C is on the upper right quadrant, and $\angle A=30^{\circ}, \angle B=60^{\circ}, \angle C=90^{\circ}$. Let the length $B C=1$. Draw the angle bisector of angle $\angle C$, and let this intersect the y-axis at D. What is the area of quadrilateral $A D B C$?
2016.19 Regular tetrahedron $P_{1} P_{2} P_{3} P_{4}$ has side length 1 . Define P_{i} for $i>4$ to be the centroid of tetrahedron $P_{i-1} P_{i-2} P_{i-3} P_{i-4}$, and $P_{\infty}=\lim _{n \rightarrow \infty} P_{n}$. What is the length of $P_{5} P_{\infty}$?
2017.2 Barack is an equilateral triangle and Michelle is a square. If Barack and Michelle each have perimeter 12, find the area of the polygon with larger area.
2017.10 Let S be the set of points A in the Cartesian plane such that the four points $A,(2,3),(-1,0)$, and $(0,6)$ form the vertices of a parallelogram. Let P be the convex polygon whose vertices are the points in S. What is the area of P ?
2017.13 Two points are located 10 units apart, and a circle is drawn with radius r centered at one of the points. A tangent line to the circle is drawn from the other point. What value of r maximizes the area of the triangle formed by the two points and the point of tangency?
2017.16 Let $A B C$ be a triangle with $A B=3, B C=5, A C=7$, and let P be a point in its interior. If G_{A}, G_{B}, G_{C} are the centroids of $\triangle P B C, \triangle P A C, \triangle P A B$, respectively, find the maximum possible area of $\triangle G_{A} G_{B} G_{C}$.
2017.17 Triangle $A B C$ is drawn such that $\angle A=80^{\circ}, \angle B=60^{\circ}$, and $\angle C=40^{\circ}$. Let the circumcenter of $\triangle A B C$ be O, and let ω be the circle with diameter $A O$. Circle ω intersects side $A C$ at point P. Let M be the midpoint of side $B C$, and let the intersection of ω and $P M$ be K. Find the measure of $\angle M O K$.
2017.19 Let T be the triangle in the $x y$-plane with vertices $(0,0),(3,0)$, and $\left(0, \frac{3}{2}\right)$. Let E be the ellipse inscribed in T which meets each side of T at its midpoint. Find the distance from the center of E to $(0,0)$.
2019.2 Let A, B, C be unique collinear points $A B=B C=\frac{1}{3}$. Let P be a point that lies on the circle centered at B with radius $\frac{1}{3}$ and the circle centered at C with radius $\frac{1}{3}$. Find the measure of angle $\angle P A C$ in degrees.
2019.5 Point P is $\sqrt{3}$ units away from plane A. Let Q be a region of A such that every line through P that intersects A in Q intersects A at an angle between 30° and 60°. What is the largest possible area of Q ?

AoPS Community

BMT Geometry from Team, Individual, General Rounds

2019.6 How many square inches of paint are needed to fully paint a regular 6 -sided die with side length 2 inches, except for the $\frac{1}{3}$-inch diameter circular dots marking 1 through 6 (a different number per side)? The paint has negligible thickness, and the circular dots are non-overlapping.
2019.7 Let $\triangle A B C$ be an equilateral triangle with side length M such that points E_{1} and E_{2} lie on side $A B, F_{1}$ and F_{2} lie on side $B C$, and $G 1$ and $G 2$ lie on side $A C$, such that

$$
m=\overline{A E_{1}}=\overline{B E_{2}}=\overline{B F_{1}}=\overline{C F_{2}}=\overline{C G_{1}}=\overline{A G_{2}}
$$

and the area of polygon $E_{1} E_{2} F_{1} F_{2} G_{1} G_{2}$ equals the combined areas of $\triangle A E_{1} G_{2}, \triangle B F_{1} E_{2}$, and $\triangle C G_{1} F_{2}$. Find the ratio $\frac{m}{M}$.
https://cdn.artofproblemsolving.com/attachments/a/0/88b36c6550c42d913cdddd4486a3dde251327 png
2019.10 Let $M A T H$ be a square with $M A=1$. Point B lies on $A T$ such that $\angle M B T=3.5 \angle B M T$. What is the area of $\triangle B M T$?
2019.11 A regular 17-gon with vertices $V_{1}, V_{2}, \ldots, V_{17}$ and sides of length 3 has a point P on $V_{1} V_{2}$ such that $V_{1} P=1$. A chord that stretches from V_{1} to V_{2} containing P is rotated within the interior of the heptadecagon around V_{2} such that the chord now stretches from V_{2} to V_{3}. The chord then hinges around V_{3}, then V_{4}, and so on, continuing until P is back at its original position. Find the total length traced by P.
2019.13 Two circles O_{1} and O_{2} intersect at points A and B. Lines $\overline{A C}$ and $\overline{B D}$ are drawn such that C is on O_{1} and D is on O_{2} and $\overline{A C} \perp \overline{A B}$ and $\overline{B D} \perp \overline{A B}$. If minor arc $A B=45$ degrees relative to O_{1} and minor arc $A B=60$ degrees relative to O_{2} and the radius of $O_{2}=10$, the area of quadrilateral $C A D B$ can be expressed in simplest form as $a+b \sqrt{k}+c \sqrt{\ell}$. Compute $a+b+c+k+\ell$.
2019.16 Let $A B C$ be a triangle with $A B=26, B C=51$, and $C A=73$, and let O be an arbitrary point in the interior of $\triangle A B C$. Lines ℓ_{1}, ℓ_{2}, and ℓ_{3} pass through O and are parallel to $\overline{A B}, \overline{B C}$, and $\overline{C A}$, respectively. The intersections of ℓ_{1}, ℓ_{2}, and ℓ_{3} and the sides of $\triangle A B C$ form a hexagon whose area is A. Compute the minimum value of A.
2019.17 Let C be a circle of radius 1 and O its center. Let $\overline{A B}$ be a chord of the circle and D a point on $\overline{A B}$ such that $O D=\frac{\sqrt{2}}{2}$ such that D is closer to A than it is to B, and if the perpendicular line at D with respect to $\frac{2}{A B}$ intersects the circle at E and $F, A D=D E$. The area of the region of the circle enclosed by $\overline{A D}, \overline{D E}$, and the minor arc $A E$ may be expressed as $\frac{a+b \sqrt{c}+d \pi}{e}$ where a, b, c, d, e are integers, $\operatorname{gcd}(a, b, d, e)=1$, and c is squarefree. Find $a+b+c+d+e e^{e}$
2019.T4 Consider a regular triangular pyramid with base $\triangle A B C$ and apex D. If we have $A B=B C=$ $A C=6$ and $A D=B D=C D=4$, calculate the surface area of the circumsphere of the pyramid.

AoPS Community

BMT Geometry from Team, Individual, General Rounds

2020.5 A Yule log is shaped like a right cylinder with height 10 and diameter 5. Freya cuts it parallel to its bases into 9 right cylindrical slices. After Freya cut it, the combined surface area of the slices of the Yule log increased by $a \pi$. Compute a.
2020.9 A circle C with radius 3 has an equilateral triangle inscribed in it. Let D be a circle lying outside the equilateral triangle, tangent to C, and tangent to the equilateral triangle at the midpoint of one of its sides. The radius of D can be written in the form m / n, where m and n are relatively prime positive integers. Compute $m+n$.
2020.11 Equilateral triangle $A B C$ has side length 2 . A semicircle is drawn with diameter $B C$ such that it lies outside the triangle, and minor arc $B C$ is drawn so that it is part of a circle centered at A. The area of the "lune" that is inside the semicircle but outside sector $A B C$ can be expressed in the form $\sqrt{p}-\frac{q \pi}{r}$, where p, q, and r are positive integers such that q and r are relatively prime. Compute $p+q+r$.
https://cdn.artofproblemsolving.com/attachments/7/7/f349a807583a83f93ba413bebf07e0132655! png
2020.13 Sheila is making a regular-hexagon-shaped sign with side length 1 . Let $A B C D E F$ be the regular hexagon, and let R, S, T and U be the midpoints of $F A, B C, C D$ and $E F$, respectively. Sheila splits the hexagon into four regions of equal width: trapezoids $A B S R, R S C F, F C T U$, and $U T D E$. She then paints the middle two regions gold. The fraction of the total hexagon that is gold can be written in the form m / n, where m and n are relatively prime positive integers. Compute $m+n$.
https://services.artofproblemsolving.com/download.php?id=YXROYWNobWVudHMvYS91LzIwOTVmZmV =
\&rn=MjAyMCBCTVQgSW5kaXZpZHVhbCAxMy5wbmc=
2020.16 The triangle with side lengths 3,5 , and k has area 6 for two distinct values of $k: x$ and y. Compute $\left|x^{2}-y^{2}\right|$.
2020.19 Alice is standing on the circumference of a large circular room of radius 10 . There is a circular pillar in the center of the room of radius 5 that blocks Alice's view. The total area in the room Alice can see can be expressed in the form $\frac{m \pi}{n}+p \sqrt{q}$, where m and n are relatively prime positive integers and p and q are integers such that q is square-free. Compute $m+n+p+q$. (Note that the pillar is not included in the total area of the room.) https://cdn.artofproblemsolving.com/attachments/5/1/26e8aa6d12d9dd85bd5b284b6176870c7d11h png
2020.23 Circle Γ has radius 10 , center O, and diameter $A B$. Point C lies on Γ such that $A C=12$. Let P be the circumcenter of $\triangle A O C$. Line $A P$ intersects Γ at Q, where Q is different from A. Then the value of $\frac{A P}{A Q}$ can be expressed in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Compute $m+n$.

AoPS Community

BMT Geometry from Team, Individual, General Rounds

2020.T1 An exterior angle is the supplementary angle to an interior angle in a polygon. What is the sum of the exterior angles of a triangle and dodecagon (12-gon), in degrees?
2020.T3 $\triangle A B C$ has $A B=5, B C=12$, and $A C=13$. A circle is inscribed in $\triangle A B C$, and $M N$ tangent to the circle is drawn such that M is on $\overline{A C}, N$ is on $\overline{B C}$, and $\overline{M N} \| \overline{A B}$. The area of $\triangle M N C$ is m / n, where m and n are relatively prime positive integers. Find $m+n$.

- General Round

2021.3 A scalene acute triangle has angles whose measures (in degrees) are whole numbers. What is the smallest possible measure of one of the angles, in degrees?
2021.6 A toilet paper roll is a cylinder of radius 8 and height 6 with a hole in the shape of a cylinder of radius 2 and the same height. That is, the bases of the roll are annuli with inner radius 2 and outer radius 8 . Compute the surface area of the roll.
2021.10 Triangle $\triangle A B C$ has side lengths $A B=A C=27$ and $B C=18$. Point D is on $\overline{A B}$ and point E is on $\overline{A C}$ such that $\angle B C D=\angle C B E=\angle B A C$. Compute $D E$.
2021.23 Shivani has a single square with vertices labeled $A B C D$. She is able to perform the following transformations: • She does nothing to the square. • She rotates the square by 90,180 , or 270 degrees. - She reflects the square over one of its four lines of symmetry.
For the first three timesteps, Shivani only performs reflections or does nothing. Then for the next three timesteps, she only performs rotations or does nothing. She ends up back in the square's original configuration. Compute the number of distinct ways she could have achieved this.
2021.25 Let $\triangle B M T$ be a triangle with $B T=1$ and height 1 . Let O_{0} be the centroid of $\triangle B M T$, and let $\overline{B O_{0}}$ and $\overline{T O_{0}}$ intersect $\overline{M T}$ and $\overline{B M}$ at B_{1} and T_{1}, respectively. Similarly, let O_{1} be the centroid of $\triangle B_{1} M T_{1}$, and in the same way, denote the centroid of $\triangle B_{n} M T_{n}$ by O_{n}, the intersection of $\overline{B O_{n}}$ with $\overline{M T}$ by B_{n+1}, and the intersection of $\overline{T O_{n}}$ with $\overline{B M}$ by T_{n+1}. Compute the area of quadrilateral $M B O_{2021} T$.
2021.T2 Compute the radius of the largest circle that fits entirely within a unit cube.
2021.T4 Let z_{1}, z_{2}, and z_{3} be the complex roots of the equation $(2 z-3 \bar{z})^{3}=54 i+54$. Compute the area of the triangle formed by z_{1}, z_{2}, and z_{3} when plotted in the complex plane.
2022.4 Big Chungus has been thinking of a new symbol for BMT, and the drawing below is what he came up with. If each of the 16 small squares in the grid are unit squares, what is the area of the shaded region?
https://cdn.artofproblemsolving.com/attachments/c/6/285948385f4644756f5d1fc50602af34e753 png

AoPS Community
 BMT Geometry from Team, Individual, General Rounds

2022.12 Parallelograms $A B G F, C D G B$ and $E F G D$ are drawn so that $A B C D E F$ is a convex hexagon, as shown. If $\angle A B G=53^{\circ}$ and $\angle C D G=56^{\circ}$, what is the measure of $\angle E F G$, in degrees? https://cdn.artofproblemsolving.com/attachments/9/f/79d163662e02bc40d2636a76b73f632e59d58 png

