

AoPS Community

IMC 2014

www.artofproblemsolving.com/community/c300674

by j____d, antoniovasquez

- Day 1 Determine all pairs (a, b) of real numbers for which there exists a unique symmetric 2×2 matrix 1 M with real entries satisfying trace(M) = a and det(M) = b. (Proposed by Stephan Wagner, Stellenbosch University) 2 Consider the following sequence $(a_n)_{n=1}^{\infty} = (1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, \dots)$ Find all pairs (α, β) of positive real numbers such that $\lim_{n\to\infty} \frac{\sum_{k=1}^{n} a_k}{n^{\alpha}} = \beta$. (Proposed by Tomas Barta, Charles University, Prague) 3 Let *n* be a positive integer. Show that there are positive real numbers a_0, a_1, \ldots, a_n such that for each choice of signs the polynomial $\pm a_n x^n \pm a_{n-1} x^{n-1} \pm \dots \pm a_1 x \pm a_0$ has n distinct real roots. (Proposed by Stephan Neupert, TUM, Mnchen) Let n > 6 be a perfect number, and let $n = p_1^{e_1} \cdots p_k^{e_k}$ be its prime factorisation with $1 < p_1 < p$ 4 $\cdots < p_k$. Prove that e_1 is an even number. A number *n* is *perfect* if s(n) = 2n, where s(n) is the sum of the divisors of *n*. (Proposed by Javier Rodrigo, Universidad Pontificia Comillas) 5 Let $A_1A_2...A_{3n}$ be a closed broken line consisting of 3n lines segments in the Euclidean plane. Suppose that no three of its vertices are collinear, and for each index i = 1, 2, ..., 3n, the triangle $A_i A_{i+1} A_{i+2}$ has counterclockwise orientation and $\angle A_i A_{i+1} A_{i+2} = 60$, using the notation $A_{3n+1} = A_1$ and $A_{3n+2} = A_2$. Prove that the number of self-intersections of the broken line is at most $\frac{3}{2}n^2 - 2n + 1$
 - Day 2

2014 IMC

AoPS Community

1 For a positive integer x, denote its n^{th} decimal digit by $d_n(x)$, i.e. $d_n(x) \in \{0, 1, \dots, 9\}$ and $x = \sum_{n=1}^{\infty} d_n(x) 10^{n-1}$. Suppose that for some sequence $(a_n)_{n=1}^{\infty}$, there are only finitely many zeros in the sequence $(d_n(a_n))_{n=1}^{\infty}$. Prove that there are infinitely many positive integers that do not occur in the sequence $(a_n)_{n=1}^{\infty}$.

(Proposed by Alexander Bolbot, State University, Novosibirsk)

2 Let $A = (a_{ij})_{i,j=1}^n$ be a symmetric $n \times n$ matrix with real entries, and let $\lambda_1, \lambda_2, \ldots, \lambda_n$ denote its eigenvalues. Show that

$$\sum_{1 \le i < j \le n} a_{ii} a_{jj} \ge \sum_{1 \le i < j \le n} \lambda_i \lambda_j$$

and determine all matrices for which equality holds.

(Proposed by Matrin Niepel, Comenius University, Bratislava)

3 Let $f(x) = \frac{\sin x}{x}$, for x > 0, and let n be a positive integer. Prove that $|f^{(n)}(x)| < \frac{1}{n+1}$, where $f^{(n)}$ denotes the nth derivative of f.

(Proposed by Alexander Bolbot, State University, Novosibirsk)

4 We say that a subset of \mathbb{R}^n is *k*-almost contained by a hyperplane if there are less than *k* points in that set which do not belong to the hyperplane. We call a finite set of points *k*-generic if there is no hyperplane that *k*-almost contains the set. For each pair of positive integers (k, n), find the minimal number of d(k, n) such that every finite *k*-generic set in \mathbb{R}^n contains a *k*-generic subset with at most d(k, n) elements.

(Proposed by Shachar Carmeli, Weizmann Inst. and Lev Radzivilovsky, Tel Aviv Univ.)

5 For every positive integer n, denote by D_n the number of permutations (x_1, \ldots, x_n) of $(1, 2, \ldots, n)$ such that $x_j \neq j$ for every $1 \leq j \leq n$. For $1 \leq k \leq \frac{n}{2}$, denote by $\Delta(n, k)$ the number of permutations (x_1, \ldots, x_n) of $(1, 2, \ldots, n)$ such that $x_i = k + i$ for every $1 \leq i \leq k$ and $x_j \neq j$ for every $1 \leq j \leq n$. Prove that

$$\Delta(n,k) = \sum_{i=0}^{k-1} \binom{k-1}{i} \frac{D_{(n+1)-(k+i)}}{n-(k+i)}$$

(Proposed by Combinatorics; Ferdowsi University of Mashhad, Iran; Mirzavaziri)

Art of Problem Solving is an ACS WASC Accredited School.