Art of Problem Solving

AoPS Community

IMC 2014

www.artofproblemsolving.com/community/c300674
by j_-_d, antoniovasquez

- Day 1

1 Determine all pairs (a, b) of real numbers for which there exists a unique symmetric 2×2 matrix M with real entries satisfying trace $(M)=a$ and $\operatorname{det}(M)=b$.
(Proposed by Stephan Wagner, Stellenbosch University)
2 Consider the following sequence

$$
\left(a_{n}\right)_{n=1}^{\infty}=(1,1,2,1,2,3,1,2,3,4,1,2,3,4,5,1, \ldots)
$$

Find all pairs (α, β) of positive real numbers such that $\lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n} a_{k}}{n^{\alpha}}=\beta$.
(Proposed by Tomas Barta, Charles University, Prague)
3 Let n be a positive integer. Show that there are positive real numbers $a_{0}, a_{1}, \ldots, a_{n}$ such that for each choice of signs the polynomial

$$
\pm a_{n} x^{n} \pm a_{n-1} x^{n-1} \pm \cdots \pm a_{1} x \pm a_{0}
$$

has n distinct real roots.
(Proposed by Stephan Neupert, TUM, Mnchen)
4 Let $n>6$ be a perfect number, and let $n=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$ be its prime factorisation with $1<p_{1}<$ $\cdots<p_{k}$. Prove that e_{1} is an even number.
A number n is perfect if $s(n)=2 n$, where $s(n)$ is the sum of the divisors of n.
(Proposed by Javier Rodrigo, Universidad Pontificia Comillas)
5 Let $A_{1} A_{2} \ldots A_{3 n}$ be a closed broken line consisting of $3 n$ lines segments in the Euclidean plane. Suppose that no three of its vertices are collinear, and for each index $i=1,2, \ldots, 3 n$, the triangle $A_{i} A_{i+1} A_{i+2}$ has counterclockwise orientation and $\angle A_{i} A_{i+1} A_{i+2}=60$, using the notation $A_{3 n+1}=A_{1}$ and $A_{3 n+2}=A_{2}$. Prove that the number of self-intersections of the broken line is at most $\frac{3}{2} n^{2}-2 n+1$

- Day 2

1 For a positive integer x, denote its $n^{\text {th }}$ decimal digit by $d_{n}(x)$, i.e. $d_{n}(x) \in\{0,1, \ldots, 9\}$ and $x=\sum_{n=1}^{\infty} d_{n}(x) 10^{n-1}$. Suppose that for some sequence $\left(a_{n}\right)_{n=1}^{\infty}$, there are only finitely many zeros in the sequence $\left(d_{n}\left(a_{n}\right)\right)_{n=1}^{\infty}$. Prove that there are infinitely many positive integers that do not occur in the sequence $\left(a_{n}\right)_{n=1}^{\infty}$.
(Proposed by Alexander Bolbot, State University, Novosibirsk)
2 Let $A=\left(a_{i j}\right)_{i, j=1}^{n}$ be a symmetric $n \times n$ matrix with real entries, and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ denote its eigenvalues. Show that

$$
\sum_{1 \leq i<j \leq n} a_{i i} a_{j j} \geq \sum_{1 \leq i<j \leq n} \lambda_{i} \lambda_{j}
$$

and determine all matrices for which equality holds.
(Proposed by Matrin Niepel, Comenius University, Bratislava)
3 Let $f(x)=\frac{\sin x}{x}$, for $x>0$, and let n be a positive integer. Prove that $\left|f^{(n)}(x)\right|<\frac{1}{n+1}$, where $f^{(n)}$ denotes the $n^{\text {th }}$ derivative of f.
(Proposed by Alexander Bolbot, State University, Novosibirsk)
$4 \quad$ We say that a subset of \mathbb{R}^{n} is k-almost contained by a hyperplane if there are less than k points in that set which do not belong to the hyperplane. We call a finite set of points k-generic if there is no hyperplane that k-almost contains the set. For each pair of positive integers (k, n), find the minimal number of $d(k, n)$ such that every finite k-generic set in \mathbb{R}^{n} contains a k-generic subset with at most $d(k, n)$ elements.
(Proposed by Shachar Carmeli, Weizmann Inst. and Lev Radzivilovsky, Tel Aviv Univ.)
5 For every positive integer n, denote by D_{n} the number of permutations $\left(x_{1}, \ldots, x_{n}\right)$ of $(1,2, \ldots, n)$ such that $x_{j} \neq j$ for every $1 \leq j \leq n$. For $1 \leq k \leq \frac{n}{2}$, denote by $\Delta(n, k)$ the number of permutations $\left(x_{1}, \ldots, x_{n}\right)$ of $(1,2, \ldots, n)$ such that $x_{i}=k+i$ for every $1 \leq i \leq k$ and $x_{j} \neq j$ for every $1 \leq j \leq n$. Prove that

$$
\Delta(n, k)=\sum_{i=0}^{k=1}\binom{k-1}{i} \frac{D_{(n+1)-(k+i)}}{n-(k+i)}
$$

(Proposed by Combinatorics; Ferdowsi University of Mashhad, Iran; Mirzavaziri)

