

AoPS Community

2014 Polish MO Finals

Finals 2014

www.artofproblemsolving.com/community/c300682

by j___d

-	Day 1
1	Let $k, n \ge 1$ be relatively prime integers. All positive integers not greater than $k + n$ are written in some order on the blackboard. We can swap two numbers that differ by k or n as many times as we want. Prove that it is possible to obtain the order $1, 2, \ldots, k + n - 1, k + n$.
2	Let $k \ge 2$, $n \ge 1$, a_1, a_2, \ldots, a_k and b_1, b_2, \ldots, b_n be integers such that $1 < a_1 < a_2 < \cdots < a_k < b_1 < b_2 < \cdots < b_n$. Prove that if $a_1+a_2+\cdots+a_k > b_1+b_2+\cdots+b_n$, then $a_1 \cdot a_2 \cdot \ldots \cdot a_k > b_1 \cdot b_2 \cdot \ldots \cdot b_n$.
3	A tetrahedron <i>ABCD</i> with acute-angled faces is inscribed in a sphere with center <i>O</i> . A line passing through <i>O</i> perpendicular to plane <i>ABC</i> crosses the sphere at point <i>D'</i> that lies on the opposide side of plane <i>ABC</i> than point <i>D</i> . Line <i>DD'</i> crosses plane <i>ABC</i> in point <i>P</i> that lies inside the triangle <i>ABC</i> . Prove, that if $\angle APB = 2\angle ACB$, then $\angle ADD' = \angle BDD'$.
-	Day 2
1	Denote the set of positive rational numbers by \mathbb{Q}_+ . Find all functions $f: \mathbb{Q}_+ \to \mathbb{Q}_+$ that satisfy
	$\underbrace{f(f(f(\dots f(f(q))\dots)))}_{n} = f(nq)$
	for all integers $n \ge 1$ and rational numbers $q > 0$.
2	Find all pairs (x, y) of positive integers that satisfy
	$2^x + 17 = y^4$
3	In an acute triangle ABC point D is the point of intersection of altitude h_a and side BC , and points M, N are orthogonal projections of point D on sides AB and AC . Lines MN and AD cross the circumcircle of triangle ABC at points P, Q and A, R . Prove that point D is the center

of the incircle of PQR.

Art of Problem Solving is an ACS WASC Accredited School.