AoPS Community

Finals 2014

www.artofproblemsolving.com/community/c300682
by j_-d

- Day 1

1 Let $k, n \geq 1$ be relatively prime integers. All positive integers not greater than $k+n$ are written in some order on the blackboard. We can swap two numbers that differ by k or n as many times as we want. Prove that it is possible to obtain the order $1,2, \ldots, k+n-1, k+n$.

2 Let $k \geq 2, n \geq 1, a_{1}, a_{2}, \ldots, a_{k}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be integers such that $1<a_{1}<a_{2}<\cdots<a_{k}<$ $b_{1}<b_{2}<\cdots<b_{n}$. Prove that if $a_{1}+a_{2}+\cdots+a_{k}>b_{1}+b_{2}+\cdots+b_{n}$, then $a_{1} \cdot a_{2} \cdot \ldots \cdot a_{k}>b_{1} \cdot b_{2} \cdot \ldots \cdot b_{n}$.

3 A tetrahedron $A B C D$ with acute-angled faces is inscribed in a sphere with center O. A line passing through O perpendicular to plane $A B C$ crosses the sphere at point D^{\prime} that lies on the opposide side of plane $A B C$ than point D. Line $D D^{\prime}$ crosses plane $A B C$ in point P that lies inside the triangle $A B C$. Prove, that if $\angle A P B=2 \angle A C B$, then $\angle A D D^{\prime}=\angle B D D^{\prime}$.

- Day 2

1 Denote the set of positive rational numbers by \mathbb{Q}_{+}. Find all functions $f: \mathbb{Q}_{+} \rightarrow \mathbb{Q}_{+}$that satisfy

$$
\underbrace{f(f(f(\ldots f(f}_{n}(q)) \ldots)))=f(n q)
$$

for all integers $n \geq 1$ and rational numbers $q>0$.
2 Find all pairs (x, y) of positive integers that satisfy

$$
2^{x}+17=y^{4}
$$

3 In an acute triangle $A B C$ point D is the point of intersection of altitude h_{a} and side $B C$, and points M, N are orthogonal projections of point D on sides $A B$ and $A C$. Lines $M N$ and $A D$ cross the circumcircle of triangle $A B C$ at points P, Q and A, R. Prove that point D is the center of the incircle of $P Q R$.

