

AoPS Community

2015 Polish MO Finals

Finals 2015

www.artofproblemsolving.com/community/c300685

by j___d

-	Day 1
1	In triangle <i>ABC</i> the angle $\angle A$ is the smallest. Points <i>D</i> , <i>E</i> lie on sides <i>AB</i> , <i>AC</i> so that $\angle CBE = \angle DCB = \angle BAC$. Prove that the midpoints of <i>AB</i> , <i>AC</i> , <i>BE</i> , <i>CD</i> lie on one circle.
2	Let P be a polynomial with real coefficients. Prove that if for some integer $k P(k)$ isn't integral, then there exist infinitely many integers m , for which $P(m)$ isn't integral.
3	Find the biggest natural number m that has the following property: among any five 500-element subsets of $\{1, 2,, 1000\}$ there exist two sets, whose intersection contains at least m numbers.
-	Day 2
1	Solve the system $\begin{cases} x+y+z=1\\ x^5+y^5+z^5=1 \end{cases}$ in real numbers.
2	Prove that diagonals of a convex quadrilateral are perpendicular if and only if inside of the

- quadrilateral there is a point, whose orthogonal projections on sides of the quadrilateral are vertices of a rectangle.
- **3** Prove that for each positive integer *a* there exists such an integer b > a, for which $1 + 2^a + 3^a$ divides $1 + 2^b + 3^b$.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱