Art of Problem Solving

AoPS Community

Finals 2015

www.artofproblemsolving.com/community/c300685
by j_-d

- Day 1

1 In triangle $A B C$ the angle $\angle A$ is the smallest. Points D, E lie on sides $A B, A C$ so that $\angle C B E=$ $\angle D C B=\angle B A C$. Prove that the midpoints of $A B, A C, B E, C D$ lie on one circle.

2 Let P be a polynomial with real coefficients. Prove that if for some integer $k P(k)$ isn't integral, then there exist infinitely many integers m, for which $P(m)$ isn't integral.

3 Find the biggest natural number m that has the following property: among any five 500-element subsets of $\{1,2, \ldots, 1000\}$ there exist two sets, whose intersection contains at least m numbers.

- Day 2

1 Solve the system

$$
\left\{\begin{array}{l}
x+y+z=1 \\
x^{5}+y^{5}+z^{5}=1
\end{array}\right.
$$

in real numbers.
2 Prove that diagonals of a convex quadrilateral are perpendicular if and only if inside of the quadrilateral there is a point, whose orthogonal projections on sides of the quadrilateral are vertices of a rectangle.

3 Prove that for each positive integer a there exists such an integer $b>a$, for which $1+2^{a}+3^{a}$ divides $1+2^{b}+3^{b}$.

