Art of Problem Solving

AoPS Community

VII Caucasus Mathematical Olympiad

www.artofproblemsolving.com/community/c3009744
by bigant146, Jalil_Huseynov

- Juniors
- Day 1

1 Positive integers a, b, c are given. It is known that $\frac{c}{b}=\frac{b}{a}$, and the number $b^{2}-a-c+1$ is a prime. Prove that a and c are double of a squares of positive integers.

2 In parallelogram $A B C D$, points E and F on segments $A D$ and $C D$ are such that $\angle B C E=$ $\angle B A F$. Points K and L on segments $A D$ and $C D$ are such that $A K=E D$ and $C L=F D$. Prove that $\angle B K D=\angle B L D$.

3 Pete wrote down 21 pairwise distinct positive integers, each not greater than $1,000,000$. For every pair (a, b) of numbers written down by Pete, Nick wrote the number

$$
F(a ; b)=a+b-\operatorname{gcd}(a ; b)
$$

on his piece of paper. Prove that one of Nick's numbers differs from all of Pete's numbers.
4 Do there exist 2021 points with integer coordinates on the plane such that the pairwise distances between them are pairwise distinct consecutive integers?

- Day 2

5 Let S be the set of all 5^{6} positive integers, whose decimal representation consists of exactly 6 odd digits. Find the number of solutions (x, y, z) of the equation $x+y=10 z$, where $x \in S, y \in S$, $z \in S$.
$6 \quad 16 \mathrm{NHL}$ teams in the first playoff round divided in pairs and to play series until 4 wins (thus the series could finish with score $4-0,4-1,4-2$, or $4-3$). After that 8 winners of the series play the second playoff round divided into 4 pairs to play series until 4 wins, and so on. After all the final round is over, it happens that k teams have non-negative balance of wins (for example, the team that won in the first round with a score of 4-2 and lost in the second with a score of 4-3 fits the condition: it has $4+3=7$ wins and $2+4=6$ losses). Find the least possible k.
$7 \quad$ Point P is chosen on the leg $C B$ of right triangle $A B C\left(\angle A C B=90^{\circ}\right)$. The line $A P$ intersects the circumcircle of $A B C$ at point Q. Let L be the midpoint of $P B$. Prove that $Q L$ is tangent to a fixed circle independent of the choice of point P.

AoPS Community

2022 Caucasus Mathematical Olympiad

8 Paul can write polynomial $(x+1)^{n}$, expand and simplify it, and after that change every coefficient by its reciprocal. For example if $n=3$ Paul gets $(x+1)^{3}=x^{3}+3 x^{2}+3 x+1$ and then $x^{3}+$ $\frac{1}{3} x^{2}+\frac{1}{3} x+1$. Prove that Paul can choose n for which the sum of Paul's polynomial coefficients is less than 2.022.

- \quad Seniors

- Day 1

1 Given a rectangular table with 2 rows and 100 columns. Dima fills the cells of the first row with numbers 1,2 or 3 . Prove that Alex can fill the cells of the second row with numbers 1,2,3 in such a way that the numbers in each column are different and the sum of the numbers in the second row equals 200.

2 Prove that infinitely many positive integers can be represented as $(a-1) / b+(b-1) / c+(c-1) / a$, where a, b and c are pairwise distinct positive integers greater than 1.

3 Do there exist 100 points on the plane such that the pairwise distances between them are pairwise distinct consecutive integer numbers larger than 2022?

4 Let ω is tangent to the sides of an acute angle with vertex A at points B and C. Let D be an arbitrary point onn the major arc $B C$ of the circle ω. Points E and F are chosen inside the angle $D A C$ so that quadrilaterals $A B D F$ and $A C E D$ are inscribed and the points A, E, F lie on the same straight line. Prove that lines $B E$ and $C F$ intersectat ω.

- Day 2

5 See Juniors 6
6 Let $A B C$ be an acute triangle. Let P be a point on the circle $(A B C)$, and Q be a point on the segment $A C$ such that $A P \perp B C$ and $B Q \perp A C$. Lot O be the circumcenter of triangle $A P Q$. Find the angle $O B C$.

7 See Juniors 8
8 There are $n>2022$ cities in the country. Some pairs of cities are connected with straight twoways airlines. Call the set of the cities unlucky, if it is impossible to color the airlines between them in two colors without monochromatic triangle (i.e. three cities A, B, C with the airlines $A B, A C$ and $B C$ of the same color).

The set containing all the cities is unlucky. Is there always an unlucky set containing exactly 2022 cities?

