AoPS Community

Turkey EGMO TST 2014

www.artofproblemsolving.com/community/c300996
by Eray, mberke

Day 1 February 13th

1 Let D be the midpoint of the side $B C$ of a triangle $A B C$ and $A D$ intersect the circumcircle of $A B C$ for the second time at E. Let P be the point symmetric to the point E with respect to the point D and Q be the point of intersection of the lines $C P$ and $A B$. Prove that if A, C, D, Q are concyclic, then the lines $B P$ and $A C$ are perpendicular.
$2 p$ is a prime. Find the all (m, n, p) positive integer triples satisfy $m^{3}+7 p^{2}=2^{n}$.
3 Denote by $d(n)$ be the biggest prime divisor of $|n|>1$. Find all polynomials with integer coefficients satisfy;

$$
P(n+d(n))=n+d(P(n))
$$

for the all $|n|>1$ integers such that $P(n)>1$ and $d(P(n))$ can be defined.

Day 2 February 14th

$4 \quad$ Let x, y, z be positive real numbers such that $x+y+z \geq x^{2}+y^{2}+z^{2}$. Show that;

$$
\frac{x^{2}+3}{x^{3}+1}+\frac{y^{2}+3}{y^{3}+1}+\frac{z^{2}+3}{z^{3}+1} \geq 6
$$

5 Let $A B C$ be a triangle with circumcircle ω and let ω_{A} be a circle drawn outside $A B C$ and tangent to side $B C$ at A_{1} and tangent to ω at A_{2}. Let the circles ω_{B} and ω_{C} and the points $B_{1}, B_{2}, C_{1}, C_{2}$ are defined similarly. Prove that if the lines $A A_{1}, B B_{1}, C C_{1}$ are concurrent, then the lines $A A_{2}, B B_{2}, C C_{2}$ are also concurrent.

6 For a given integer $n \geq 3$, let $S_{1}, S_{2}, \ldots, S_{m}$ be distinct three-element subsets of the set $\{1,2, \ldots, n\}$ such that for each $1 \leq i, j \leq m ; i \neq j$ the sets $S_{i} \cap S_{j}$ contain exactly one element. Determine the maximal possible value of m for each n.

