AoPS Community

Turkey Team Selection Test 2022

www.artofproblemsolving.com/community/c3010153
by BarisKoyuncu, electrovector

Day 19 March 2022
1 Find all pairs of prime numbers (p, q) for which

$$
2^{p}=2^{q-2}+q!.
$$

2 Find all functions $f: \mathbb{Q}^{+} \rightarrow \mathbb{Q}$ satisfying $f(x)+f(y)=\left(f(x+y)+\frac{1}{x+y}\right)(1-x y+f(x y))$ for all $x, y \in \mathbb{Q}^{+}$.

3 In a triangle $A B C$, the incircle centered at I is tangent to the sides $B C, A C$ and $A B$ at D, E and F, respectively. Let X, Y and Z be the feet of the perpendiculars drawn from A, B and C to a line ℓ passing through I. Prove that $D X, E Y$ and $F Z$ are concurrent.

Day 210 March 2022
$4 \quad$ We have three circles w_{1}, w_{2} and Γ at the same side of line l such that w_{1} and w_{2} are tangent to l at K and L and to Γ at M and N, respectively. We know that w_{1} and w_{2} do not intersect and they are not in the same size. A circle passing through K and L intersect Γ at A and B. Let R and S be the reflections of M and N with respect to l. Prove that A, B, R, S are concyclic.

5 On a circle, 2022 points are chosen such that distance between two adjacent points is always the same. There are k arcs, each having endpoints on chosen points, with different lengths. Arcs do not contain each other. What is the maximum possible number of k ?

6 For a polynomial $P(x)$ with integer coefficients and a prime p, if there is no $n \in \mathbb{Z}$ such that $p \mid P(n)$, we say that polynomial P excludes p. Is there a polynomial with integer coefficients such that having degree of 5 , excluding exactly one prime and not having a rational root?

Day 311 March 2022
7 What is the minimum value of the expression

$$
x y+y z+z x+\frac{1}{x}+\frac{2}{y}+\frac{5}{z}
$$

where x, y, z are positive real numbers?
$8 \quad A B C$ triangle with $|A B|<|B C|<|C A|$ has the incenter I. The orthocenters of triangles $I B C, I A C$ and $I A B$ are H_{A}, H_{A} and $H_{A} . H_{B} H_{C}$ intersect $B C$ at K_{A} and perpendicular line from I to $H_{B} H_{B}$ intersect $B C$ at $L_{A} . K_{B}, L_{B}, K_{C}, L_{C}$ are defined similarly. Prove that

$$
\left|K_{A} L_{A}\right|=\left|K_{B} L_{B}\right|+\left|K_{C} L_{C}\right|
$$

9 In every acyclic graph with 2022 vertices we can choose k of the vertices such that every chosen vertex has at most 2 edges to chosen vertices. Find the maximum possible value of k.

