Art of Problem Solving

AoPS Community

Turkey EGMO TST 2022

www.artofproblemsolving.com/community/c3010935
by BarisKoyuncu, hakN

Day 127 February 2022
1 Given an acute angle triangle $A B C$ with circumcircle Γ and circumcenter O. A point P is taken on the line $B C$ but not on $[B C]$. Let K be the reflection of the second intersection of the line $A P$ and Γ with respect to $O P$. If M is the intersection of the lines $A K$ and $O P$, prove that $\angle O M B+\angle O M C=180^{\circ}$.

2 We are given some three element subsets of $\{1,2, \ldots, n\}$ for which any two of them have at most one common element. We call a subset of $\{1,2, \ldots, n\}$ nice if it doesn't include any of the given subsets. If no matter how the three element subsets are selected in the beginning, we can add one more element to every 29 -element nice subset while keeping it nice, find the minimum value of n.

3 Find all pairs of integers (a, b) satisfying the equation $a^{7}(a-1)=19 b(19 b+2)$.
Day 228 February 2022
4 On a table there are 100 red and k white buckets for which all of them are initially empty. In each move, a red and a white bucket is selected and an equal amount of water is added to both of them. After some number of moves, there is no empty bucket and for every pair of buckets that are selected together at least once during the moves, the amount of water in these buckets is the same. Find all the possible values of k.
$5 \quad$ We are given three points A, B, C on a semicircle. The tangent lines at A and B to the semicircle meet the extension of the diameter at points M, N respectively. The line passing through A that is perpendicular to the diameter meets $N C$ at R, and the line passing through B that is perpendicular to the diameter meets $M C$ at S. If the line $R S$ meets the extension of the diameter at Z, prove that $Z C$ is tangent to the semicircle.

6 Let x, y, z be positive real numbers satisfying the equations

$$
x y z=1 \text { and } \frac{y}{z}\left(y-x^{2}\right)+\frac{z}{x}\left(z-y^{2}\right)+\frac{x}{y}\left(x-z^{2}\right)=0
$$

What is the minimum value of the ratio of the sum of the largest and smallest numbers among x, y, z to the median of them.

