AoPS Community

CJMO - Canadian Junior Mathematical Olympiad 2022

www.artofproblemsolving.com/community/c3012254
by parmenides51, Bluesoul, MortemEtInteritum

1 Let $A B C$ be an acute angled triangle with circumcircle Γ. The perpendicular from A to $B C$ intersects Γ at D, and the perpendicular from B to $A C$ intersects Γ at E. Prove that if $|A B|=$ $|D E|$, then $\angle A C B=60^{\circ}$. the official wording

2 You have an infinite stack of T-shaped tetrominoes (composed of four squares of side length 1), and an $n \times n$ board. You are allowed to place some tetrominoes on the board, possibly rotated, as long as no two tetrominoes overlap and no tetrominoes extend off the board. For which values of n can you cover the entire board?

- \quad those were also the first CMO problems

3 Assume that real numbers a and b satisfy

$$
a b+\sqrt{a b+1}+\sqrt{a^{2}+b} \sqrt{a+b^{2}}=0 .
$$

Find, with proof, the value of

$$
b \sqrt{a^{2}+b}+a \sqrt{b^{2}+a}
$$

4 Let $d(k)$ denote the number of positive integer divisors of k. For example, $d(6)=4$ since 6 has 4 positive divisors, namely, $1,2,3$, and 6 . Prove that for all positive integers n,

$$
d(1)+d(3)+d(5)+\ldots+d(2 n-1) \leq d(2)+d(4)+d(6)+\ldots+d(2 n) .
$$

5 Vishal starts with n copies of the number 1 written on the board. Every minute, he takes two numbers a, b and replaces them with either $a+b$ or $\min \left(a^{2}, b^{2}\right)$. After $n-1$ there is 1 number on the board. Let the maximal possible value of this number be $f(n)$. Prove $2^{n / 3}<f(n) \leq 3^{n / 3}$.

