AoPS Community

Canada National Olympiad 2022

www.artofproblemsolving.com/community/c3012255
by parmenides51, MortemEtInteritum

1 Assume that real numbers a and b satisfy

$$
a b+\sqrt{a b+1}+\sqrt{a^{2}+b} \sqrt{a+b^{2}}=0 .
$$

Find, with proof, the value of

$$
b \sqrt{a^{2}+b}+a \sqrt{b^{2}+a}
$$

2 Let $d(k)$ denote the number of positive integer divisors of k. For example, $d(6)=4$ since 6 has 4 positive divisors, namely, $1,2,3$, and 6 . Prove that for all positive integers n,

$$
d(1)+d(3)+d(5)+\ldots+d(2 n-1) \leq d(2)+d(4)+d(6)+\ldots+d(2 n) .
$$

3 Vishal starts with n copies of the number 1 written on the board. Every minute, he takes two numbers a, b and replaces them with either $a+b$ or $\min \left(a^{2}, b^{2}\right)$. After $n-1$ there is 1 number on the board. Let the maximal possible value of this number be $f(n)$. Prove $2^{n / 3}<f(n) \leq 3^{n / 3}$.

4 Let n be a positive integer. A set of n distinct lines divides the plane into various (possibly unbounded) regions. The set of lines is called "nice" if no three lines intersect at a single point. A "colouring" is an assignment of two colours to each region such that the first colour is from the set $\left\{A_{1}, A_{2}\right\}$, and the second colour is from the set $\left\{B_{1}, B_{2}, B_{3}\right\}$. Given a nice set of lines, we call it "colourable" if there exists a colouring such that
(a) no colour is assigned to two regions that share an edge;
(b) for each $i \in\{1,2\}$ and $j \in\{1,2,3\}$ there is at least one region that is assigned with both A_{i} and B_{j}.
Determine all n such that every nice configuration of n lines is colourable.
5 Let $A B C D E$ be a convex pentagon such that the five vertices lie on a circle and the five sides are tangent to another circle inside the pentagon. There are $\binom{5}{3}=10$ triangles which can be formed by choosing 3 of the 5 vertices. For each of these 10 triangles, mark its incenter. Prove that these 10 incenters lie on two concentric circles.

