AoPS Community

USAJMO 2022

www.artofproblemsolving.com/community/c3015327
by oVlad, ike.chen, AwesomeYRY, DottedCaculator, GoodMorning, jacoporizzo, rrusczyk

- Day 1 March 22nd

1 For which positive integers m does there exist an infinite arithmetic sequence of integers a_{1}, a_{2}, \ldots and an infinite geometric sequence of integers g_{1}, g_{2}, \ldots satisfying the following properties?

- $a_{n}-g_{n}$ is divisible by m for all integers $n \geq 1$;
- $a_{2}-a_{1}$ is not divisible by m.

Holden Mui
2 Let a and b be positive integers. The cells of an $(a+b+1) \times(a+b+1)$ grid are colored amber and bronze such that there are at least $a^{2}+a b-b$ amber cells and at least $b^{2}+a b-a$ bronze cells. Prove that it is possible to choose a amber cells and b bronze cells such that no two of the $a+b$ chosen cells lie in the same row or column.

3 Let $b \geq 2$ and $w \geq 2$ be fixed integers, and $n=b+w$. Given are $2 b$ identical black rods and $2 w$ identical white rods, each of side length 1.

We assemble a regular $2 n$-gon using these rods so that parallel sides are the same color. Then, a convex $2 b$-gon B is formed by translating the black rods, and a convex $2 w$-gon W is formed by translating the white rods. An example of one way of doing the assembly when $b=3$ and $w=2$ is shown below, as well as the resulting polygons B and W.

Prove that the difference of the areas of B and W depends only on the numbers b and w, and
not on how the $2 n$-gon was assembled.
Proposed by Ankan Bhattacharya

- Day 2 March 23rd

4 Let $A B C D$ be a rhombus, and let K and L be points such that K lies inside the rhombus, L lies outside the rhombus, and $K A=K B=L C=L D$. Prove that there exist points X and Y on lines $A C$ and $B D$ such that $K X L Y$ is also a rhombus.

Proposed by Ankan Bhattacharya

5 Find all pairs of primes (p, q) for which $p-q$ and $p q-q$ are both perfect squares.
6 Let a_{0}, b_{0}, c_{0} be complex numbers, and define

$$
\begin{aligned}
a_{n+1} & =a_{n}^{2}+2 b_{n} c_{n} \\
b_{n+1} & =b_{n}^{2}+2 c_{n} a_{n} \\
c_{n+1} & =c_{n}^{2}+2 a_{n} b_{n}
\end{aligned}
$$

for all nonnegative integers n.
Suppose that max $\left\{\left|a_{n}\right|,\left|b_{n}\right|,\left|c_{n}\right|\right\} \leq 2022$ for all n. Prove that

$$
\left|a_{0}\right|^{2}+\left|b_{0}\right|^{2}+\left|c_{0}\right|^{2} \leq 1 .
$$

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

