## AoPS Community

## USAMO 2022

www.artofproblemsolving.com/community/c3015506
by inventivedant, AwesomeYRY, DottedCaculator, rrusczyk

- Day 1 March 22
$1 \quad$ Let $a$ and $b$ be positive integers. The cells of an $(a+b+1) \times(a+b+1)$ grid are colored amber and bronze such that there are at least $a^{2}+a b-b$ amber cells and at least $b^{2}+a b-a$ bronze cells. Prove that it is possible to choose $a$ amber cells and $b$ bronze cells such that no two of the $a+b$ chosen cells lie in the same row or column.

2 Let $b \geq 2$ and $w \geq 2$ be fixed integers, and $n=b+w$. Given are $2 b$ identical black rods and $2 w$ identical white rods, each of side length 1.

We assemble a regular $2 n$-gon using these rods so that parallel sides are the same color. Then, a convex $2 b$-gon $B$ is formed by translating the black rods, and a convex $2 w$-gon $W$ is formed by translating the white rods. An example of one way of doing the assembly when $b=3$ and $w=2$ is shown below, as well as the resulting polygons $B$ and $W$.


Prove that the difference of the areas of $B$ and $W$ depends only on the numbers $b$ and $w$, and not on how the $2 n$-gon was assembled.

Proposed by Ankan Bhattacharya
$3 \quad$ Let $\mathbb{R}_{>0}$ be the set of all positive real numbers. Find all functions $f: \mathbb{R}_{>0} \rightarrow \mathbb{R}_{>0}$ such that for all $x, y \in \mathbb{R}_{>0}$ we have

$$
f(x)=f(f(f(x))+y)+f(x f(y)) f(x+y) .
$$

## - Day 2 March 23

4 Find all pairs of primes $(p, q)$ for which $p-q$ and $p q-q$ are both perfect squares.
$5 \quad$ A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is essentially increasing if $f(s) \leq f(t)$ holds whenever $s \leq t$ are real numbers such that $f(s) \neq 0$ and $f(t) \neq 0$.

Find the smallest integer $k$ such that for any 2022 real numbers $x_{1}, x_{2}, \ldots, x_{2022}$, there exist $k$ essentially increasing functions $f_{1}, \ldots, f_{k}$ such that

$$
f_{1}(n)+f_{2}(n)+\cdots+f_{k}(n)=x_{n} \quad \text { for every } n=1,2, \ldots 2022 .
$$

6 There are 2022 users on a social network called Mathbook, and some of them are Mathbookfriends. (On Mathbook, friendship is always mutual and permanent.)
Starting now, Mathbook will only allow a new friendship to be formed between two users if they have at least two friends in common. What is the minimum number of friendships that must already exist so that every user could eventually become friends with every other user?

- https://data.artofproblemsolving.com/images/maa_logo.png These problems are copyright © Mathematical Association of America (http://maa.org).

