AoPS Community

Utah Mathematical Olympiad 2022

www.artofproblemsolving.com/community/c3016098
by kred9

1 Let $n \geq 2$ be an integer. Thibaud the Tiger lays $n 2 \times 2$ overlapping squares out on a table, such that the centers of the squares are equally spaced along the line $y=x$ from $(0,0)$ to $(1,1)$ (including the two endpoints). For example, for $n=4$ the resulting figure is shown below, and it covers a total area of $\frac{23}{3}$.

Find, with proof, the minimum n such that the figure covers an area of at least $\sqrt{63}$.
2 Let x and y be relatively prime integers. Show that $x^{2}+x y+y^{2}$ and $x^{2}+3 x y+y^{2}$ are relatively prime.

3 Find all sequences $a_{1}, a_{2}, a_{3}, \ldots$ of real numbers such that for all positive integers $m, n \geq 1$, we have

$$
\begin{aligned}
a_{m+n} & =a_{m}+a_{n}-m n \text { and } \\
a_{m n} & =m^{2} a_{n}+n^{2} a_{m}+2 a_{m} a_{n} .
\end{aligned}
$$

$4 \quad$ Alpha and Beta are playing a game on a 10×100 grid of squares. At each turn, they can fold the grid along any of the interior horizontal or vertical gridlines, which creates a smaller (folded) grid of squares (on the first move, they can choose one of 9 horizontal or 99 vertical gridlines). The
person who makes the last fold wins. If both players play optimally and Alpha starts, determine with proof who wins.
$5 \quad 2022$ lily pads are arranged in a circle. Each lily pad starts with height 1. A frog starts on one of the lily pads, and jumps around clockwise as follows: if the frog is on a lily bad of height k, the lily pad grows by 1 (becoming $k+1$), and then the frog jumps k lily pads clockwise (i.e. jumping over $(k-1)$). The frog continues doing this as long as it pleases.
After n jumps, let $D(n)$ be the difference between the tallest lily pad and the shortest lily pad. Find, with proof, the maximum possible value of $D(n)$, or prove that $D(n)$ is unbounded.
$6 \quad$ An $m \times n$ grid of squares (with m rows and n columns) has some of its squares colored blue. The grid is called fish-friendly if a fish can swim from the left edge of the grid to the right edge of the grid only moving through blue squares. In other words, there is a sequence of blue squares, each horizontally or vertically adjacent to the previous square, starting in the first column and ending in the last column.

Prove that the number of fish-friendly 42×49 grids is at least 2^{2022}.

