

AoPS Community

2022 Bulgarian Spring Math Competition

www.artofproblemsolving.com/community/c3016176 by Marinchoo

Problem 8.1 Let $P = (x^4 - 40x^2 + 144)(x^3 - 16x)$. *a*) Factor *P* as a product of irreducible polynomials. *b*) We write down the values of P(10) and P(91). What is the greatest common divisor of the two numbers?

Problem 8.2 Let $\triangle ABC$ have AB = 1 cm, BC = 2 cm and $AC = \sqrt{3}$ cm. Points D, E and F lie on segments AB, AC and BC respectively are such that AE = BD and BF = AD. The angle bisector of $\angle BAC$ intersects the circumcircle of $\triangle ADE$ for the second time at M and the angle bisector of $\angle ABC$ intersects the circumcircle of $\triangle BDF$ at N. Determine the length of MN.

Problem 8.3 Given the inequalities: a) $\left(\frac{2a}{b+c}\right)^2 + \left(\frac{2b}{a+c}\right)^2 + \left(\frac{2c}{a+b}\right)^2 \ge \frac{a}{c} + \frac{b}{a} + \frac{c}{b}b\left(\frac{a+b}{c}\right)^2 + \left(\frac{b+c}{a}\right)^2 + \left(\frac{c+a}{b}\right)^2 \ge \frac{a}{b} + \frac{b}{c} + \frac{c}{a} + 9$

For each of them either prove that it holds for all positive real numbers a, b, c or present a counterexample (a, b, c) which doesn't satisfy the inequality.

Problem 8.4 Let $p = (a_1, a_2, \dots, a_{12})$ be a permutation of $1, 2, \dots, 12$. We will denote

 $S_p = |a_1 - a_2| + |a_2 - a_3| + \ldots + |a_{11} - a_{12}|$

We'll call *p* optimistic if $a_i > \min(a_{i-1}, a_{i+1}) \forall i = 2, ..., 11. a)$ What is the maximum possible value of S_p . How many permutations *p* achieve this maximum?

b) What is the number of *optimistic* permtations p? c) What is the maximum possible value of S_p for an *optimistic* p? How many *optimistic* permutations p achieve this maximum?

Problem 9.1 Let f(x) be a quadratic function with integer coefficients. If we know that f(0), f(3) and f(4) are all different and elements of the set $\{2, 20, 202, 2022\}$, determine all possible values of f(1).

Problem 9.2 Let $\triangle ABC$ have median CM ($M \in AB$) and circumcenter O. The circumcircle of $\triangle AMO$ bisects CM. Determine the least possible perimeter of $\triangle ABC$ if it has integer side lengths.

Problem 9.3 Find all primes *p*, such that there exist positive integers *x*, *y* which satisfy

$$\begin{cases} p+49 = 2x^2 \\ p^2 + 49 = 2y^2 \end{cases}$$

AoPS Community

2022 Bulgarian Spring Math Competition

Problem 9.4 14 students attend the IMO training camp. Every student has at least k favourite numbers. The organisers want to give each student a shirt with one of the student's favourite numbers on the back. Determine the least k, such that this is always possible if: a) The students can be arranged in a circle such that every two students sitting next to one another have different numbers. b) 7 of the students are boys, the rest are girls, and there isn't a boy and a girl with the same number.

Problem 10.1 If $x, y, z \in \mathbb{R}$ are solutions to the system of equations

$$\begin{cases} x - y + z - 1 = 0\\ xy + 2z^2 - 6z + 1 = 0 \end{cases}$$

what is the greatest value of $(x - 1)^2 + (y + 1)^2$?

- **Problem 10.2** Let $\triangle ABC$ have incenter *I*. The line *CI* intersects the circumcircle of $\triangle ABC$ for the second time at *L*, and *CI* = 2*IL*. Points *M* and *N* lie on the segment *AB*, such that $\angle AIM = \angle BIN = 90^{\circ}$. Prove that AB = 2MN.
- **Problem 10.3** A permutation σ of the numbers 1, 2, ..., 10 is called *bad* if there exist integers i, j, k which satisfy

 $1 \le i < j < k \le 10$ and $\sigma(j) < \sigma(k) < \sigma(i)$

and good otherwise. Find the number of good permutations.

Problem 10.4 Find the smallest odd prime p, such that there exist coprime positive integers k and ℓ which satisfy

 $4k - 3\ell = 12$ and $\ell^2 + \ell k + k^2 \equiv 3 \pmod{p}$

Problem 11.1 Solve the equation

 $(x+1)\log_3^2 x + 4x\log_3 x - 16 = 0$

Problem 11.2 A circle through the vertices A and B of $\triangle ABC$ intersects segments AC and BC at points P and Q respectively. If AQ = AC, $\angle BAQ = \angle CBP$ and $AB = (\sqrt{3} + 1)PQ$, find the measures of the angles of $\triangle ABC$.

Problem 11.3 In every cell of a table with *n* rows and *m* columns is written one of the letters *a*, *b*, *c*. Every two rows of the table have the same letter in at most $k \ge 0$ positions and every two columns coincide at most *k* positions. Find *m*, *n*, *k* if

$$\frac{2mn+6k}{3(m+n)} \ge k+1$$

AoPS Community

2022 Bulgarian Spring Math Competition

- **Problem 11.4** Let $n \ge 2$ be a positive integer. The set M consists of $2n^2 3n + 2$ positive rational numbers. Prove that there exists a subset A of M with n elements with the following property: $\forall 2 \le k \le n$ the sum of any k (not necessarily distinct) numbers from A is not in A.
- **Problem 12.1** *ABCD* is circumscribed in a circle k, such that [ACB] = s, [ACD] = t, s < t. Determine the smallest value of $\frac{4s^2+t^2}{5st}$ and when this minimum is achieved.
- **Problem 12.2** Let ABCDV be a regular quadrangular pyramid with V as the apex. The plane λ intersects the VA, VB, VC and VD at M, N, P, Q respectively. Find VQ : QD, if VM : MA = 2 : 1, VN : NB = 1 : 1 and VP : PC = 1 : 2.
- **Problem 12.3** Let $P, Q \in \mathbb{R}[x]$, such that Q is a 2021-degree polynomial and let $a_1, a_2, \ldots, a_{2022}, b_1, b_2, \ldots, b_{2022}$ be real numbers such that $a_1a_2 \ldots a_{2022} \neq 0$. If for all real x

$$P(a_1Q(x) + b_1) + \ldots + P(a_{2021}Q(x) + b_{2021}) = P(a_{2022}Q(x) + b_{2022})$$

prove that P(x) has a real root.

Problem 12.4 Let m and n be positive integers and p be a prime number. Find the greatest positive integer s (as a function of m, n and p) such that from a random set of mnp positive integers we can choose snp numbers, such that they can be partitioned into s sets of np numbers, such that they can be partitioned into s sets of np numbers, such that the sum of the numbers in every group gives the same remainder when divided by p.

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.