www.artofproblemsolving.com/community/c3016176
by Marinchoo

Problem 8.1 Let $P=\left(x^{4}-40 x^{2}+144\right)\left(x^{3}-16 x\right)$. a) Factor P as a product of irreducible polynomials. b) We write down the values of $P(10)$ and $P(91)$. What is the greatest common divisor of the two numbers?

Problem 8.2 Let $\triangle A B C$ have $A B=1 \mathrm{~cm}, B C=2 \mathrm{~cm}$ and $A C=\sqrt{3} \mathrm{~cm}$. Points D, E and F lie on segments $A B, A C$ and $B C$ respectively are such that $A E=B D$ and $B F=A D$. The angle bisector of $\angle B A C$ intersects the circumcircle of $\triangle A D E$ for the second time at M and the angle bisector of $\angle A B C$ intersects the circumcircle of $\triangle B D F$ at N. Determine the length of $M N$.

Problem 8.3 Given the inequalities: a) $\left.\left(\frac{2 a}{b+c}\right)^{2}+\left(\frac{2 b}{a+c}\right)^{2}+\left(\frac{2 c}{a+b}\right)^{2} \geq \frac{a}{c}+\frac{b}{a}+\frac{c}{b} b\right)\left(\frac{a+b}{c}\right)^{2}+\left(\frac{b+c}{a}\right)^{2}+$ $\left(\frac{c+a}{b}\right)^{2} \geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+9$
For each of them either prove that it holds for all positive real numbers a, b, c or present a counterexample (a, b, c) which doesn't satisfy the inequality.

Problem 8.4 Let $p=\left(a_{1}, a_{2}, \ldots, a_{12}\right)$ be a permutation of $1,2, \ldots, 12$.
We will denote

$$
S_{p}=\left|a_{1}-a_{2}\right|+\left|a_{2}-a_{3}\right|+\ldots+\left|a_{11}-a_{12}\right|
$$

We'll call p optimistic if $\left.a_{i}>\min \left(a_{i-1}, a_{i+1}\right) \forall i=2, \ldots, 11 . a\right)$ What is the maximum possible value of S_{p}. How many permutations p achieve this maximum?
b) What is the number of optimistic permtations p ? c) What is the maximum possible value of S_{p} for an optimistic p ? How many optimistic permutations p achieve this maximum?

Problem 9.1 Let $f(x)$ be a quadratic function with integer coefficients. If we know that $f(0), f(3)$ and $f(4)$ are all different and elements of the set $\{2,20,202,2022\}$, determine all possible values of $f(1)$.

Problem 9.2 Let $\triangle A B C$ have median $C M(M \in A B)$ and circumcenter O. The circumcircle of $\triangle A M O$ bisects $C M$. Determine the least possible perimeter of $\triangle A B C$ if it has integer side lengths.

Problem 9.3 Find all primes p, such that there exist positive integers x, y which satisfy

$$
\left\{\begin{array}{l}
p+49=2 x^{2} \\
p^{2}+49=2 y^{2}
\end{array}\right.
$$

AoPS Community

2022 Bulgarian Spring Math Competition

Problem 9.4 14 students attend the IMO training camp. Every student has at least k favourite numbers. The organisers want to give each student a shirt with one of the student's favourite numbers on the back. Determine the least k, such that this is always possible if: a) The students can be arranged in a circle such that every two students sitting next to one another have different numbers. b) 7 of the students are boys, the rest are girls, and there isn't a boy and a girl with the same number.

Problem 10.1 If $x, y, z \in \mathbb{R}$ are solutions to the system of equations

$$
\left\{\begin{array}{l}
x-y+z-1=0 \\
x y+2 z^{2}-6 z+1=0
\end{array}\right.
$$

what is the greatest value of $(x-1)^{2}+(y+1)^{2}$?
Problem 10.2 Let $\triangle A B C$ have incenter I. The line $C I$ intersects the circumcircle of $\triangle A B C$ for the second time at L, and $C I=2 I L$. Points M and N lie on the segment $A B$, such that $\angle A I M=$ $\angle B I N=90^{\circ}$. Prove that $A B=2 M N$.

Problem 10.3 A permutation σ of the numbers $1,2, \ldots, 10$ is called bad if there exist integers i, j, k which satisfy

$$
1 \leq i<j<k \leq 10 \quad \text { and } \quad \sigma(j)<\sigma(k)<\sigma(i)
$$

and good otherwise. Find the number of good permutations.
Problem 10.4 Find the smallest odd prime p, such that there exist coprime positive integers k and ℓ which satisfy

$$
4 k-3 \ell=12 \quad \text { and } \quad \ell^{2}+\ell k+k^{2} \equiv 3(\bmod p)
$$

Problem 11.1 Solve the equation

$$
(x+1) \log _{3}^{2} x+4 x \log _{3} x-16=0
$$

Problem 11.2 A circle through the vertices A and B of $\triangle A B C$ intersects segments $A C$ and $B C$ at points P and Q respectively. If $A Q=A C, \angle B A Q=\angle C B P$ and $A B=(\sqrt{3}+1) P Q$, find the measures of the angles of $\triangle A B C$.

Problem 11.3 In every cell of a table with n rows and m columns is written one of the letters a, b, c. Every two rows of the table have the same letter in at most $k \geq 0$ positions and every two columns coincide at most k positions. Find m, n, k if

$$
\frac{2 m n+6 k}{3(m+n)} \geq k+1
$$

Problem 11.4 Let $n \geq 2$ be a positive integer. The set M consists of $2 n^{2}-3 n+2$ positive rational numbers. Prove that there exists a subset A of M with n elements with the following property: $\forall 2 \leq k \leq n$ the sum of any k (not necessarily distinct) numbers from A is not in A.

Problem 12.1 $A B C D$ is circumscribed in a circle k, such that $[A C B]=s,[A C D]=t, s<t$. Determine the smallest value of $\frac{4 s^{2}+t^{2}}{5 s t}$ and when this minimum is achieved.

Problem 12.2 Let $A B C D V$ be a regular quadrangular pyramid with V as the apex. The plane λ intersects the $V A, V B, V C$ and $V D$ at M, N, P, Q respectively. Find $V Q: Q D$, if $V M: M A=2: 1$, $V N: N B=1: 1$ and $V P: P C=1: 2$.

Problem 12.3 Let $P, Q \in \mathbb{R}[x]$, such that Q is a 2021-degree polynomial and let $a_{1}, a_{2}, \ldots, a_{2022}, b_{1}, b_{2}, \ldots, b_{2022}$ be real numbers such that $a_{1} a_{2} \ldots a_{2022} \neq 0$. If for all real x

$$
P\left(a_{1} Q(x)+b_{1}\right)+\ldots+P\left(a_{2021} Q(x)+b_{2021}\right)=P\left(a_{2022} Q(x)+b_{2022}\right)
$$

prove that $P(x)$ has a real root.
Problem 12.4 Let m and n be positive integers and p be a prime number. Find the greatest positive integer s (as a function of m, n and p) such that from a random set of $m n p$ positive integers we can choose snp numbers, such that they can be partitioned into s sets of $n p$ numbers, such that the sum of the numbers in every group gives the same remainder when divided by p.

