

AoPS Community

Vietnam National Olympiad 2016

www.artofproblemsolving.com/community/c301619 by gavrilos, N.T.TUAN, guangminhltv99

– Day 1

		$\int 6x - y + z^2 = 3$		
1	Solve the system of equations	$x^2 - y^2 - 2z = -1$	$(x, y, z \in \mathbb{R}.)$	
		$6x^2 - 3y^2 - y - 2z^2 = 0$		

2 a) Let (a_n) be the sequence defined by $a_n = \ln(2n^2 + 1) - \ln(n^2 + n + 1) \quad \forall n \ge 1$. Prove that the set $\{n \in \mathbb{N} | \{a_n\} < \frac{1}{2}\}$ is a finite set; b) Let (b_n) be the sequence defined by $a_n = \ln(2n^2 + 1) + \ln(n^2 + n + 1) \quad \forall n \ge 1$. Prove that the set $\{n \in \mathbb{N} | \{b_n\} < \frac{1}{2016}\}$ is an infinite set.

- 3 Let ABC be an acute triange with B, C fixed. Let D be the midpoint of BC and E, F be the foot of the perpendiculars from D to AB, AC, respectively.
 a) Let O be the circumcenter of triangle ABC and M = EF ∩ AO, N = EF ∩ BC. Prove that the circumcircle of triangle AMN passes through a fixed point;
 b) Assume that tangents of the circumcircle of triangle AEF at E, F are intersecting at T. Prove that T is on a fixed line.
- 4 Let m and n be positive integers. A people planted two kind of different trees on a plot tabular grid size $m \times n$ (each square plant one tree.) A plant called *inpressive* if two conditions following conditions are met simultaneously:

i) The number of trees in each of kind is equal;

ii) In each row the number of tree of each kind is diffrenent not less than a half of number of cells on that row and In each colum the number of tree of each kind is diffrenent not less than a half of number of cells on that colum.

a) Find an inpressive plant when m = n = 2016;

b) Prove that if there at least a inpressive plant then 4|m and 4|n.

-	Day 2
1	Find all $a \in \mathbb{R}$ such that there is function $f : \mathbb{R} \to \mathbb{R}$ i) $f(1) = 2016$ ii) $f(x + y + f(y)) = f(x) + ay \forall x, y \in \mathbb{R}$

AoPS Community

2016 Vietnam National Olympiad

2 Given a triangle ABC inscribed by circumcircle (O). The angles at B, C are acute angle. Let M on the arc BC that doesn't contain A such that AM is not perpendicular to BC. AM meets the perpendicular bisector of BC at T. The circumcircle (AOT) meets (O) at N ($N \neq A$).

a) Prove that $\angle BAM = \angle CAN$.

b) Let *I* be the incenter and *G* be the foor of the angle bisector of $\angle BAC$. *AI*, *MI*, *NI* intersect (*O*) at *D*, *E*, *F* respectively. Let $P = DF \cap AM$, $Q = DE \cap AN$. The circle passes through *P* and touches *AD* at *I* meets *DF* at *H* ($H \neq D$). The circle passes through *Q* and touches *AD* at *I* meets *DE* at *K* ($K \neq D$). Prove that the circumcircle (*GHK*) touches *BC*.

3 a) Prove that if *n* is an odd perfect number then *n* has the following form

$$n = p^s m^2$$

where p is prime has form 4k + 1, s is positive integers has form 4h + 1, and $m \in \mathbb{Z}^+$, m is not divisible by p.

b) Find all $n \in \mathbb{Z}^+$, n > 1 such that n - 1 and $\frac{n(n+1)}{2}$ is perfect number

