AoPS Community

Vietnam National Olympiad 2016

www.artofproblemsolving.com/community/c301619
by gavrilos, N.T.TUAN, quangminhltv99

- Day 1

1 Solve the system of equations $\left\{\begin{array}{l}6 x-y+z^{2}=3 \\ x^{2}-y^{2}-2 z=-1 \\ 6 x^{2}-3 y^{2}-y-2 z^{2}=0\end{array} \quad(x, y, z \in \mathbb{R}\right.$.$) .$
2 a) Let $\left(a_{n}\right)$ be the sequence defined by $a_{n}=\ln \left(2 n^{2}+1\right)-\ln \left(n^{2}+n+1\right) \forall n \geq 1$. Prove that the set $\left\{n \in \mathbb{N} \left\lvert\,\left\{a_{n}\right\}<\frac{1}{2}\right.\right\}$ is a finite set;
b) Let $\left(b_{n}\right)$ be the sequence defined by $a_{n}=\ln \left(2 n^{2}+1\right)+\ln \left(n^{2}+n+1\right) \forall n \geq 1$. Prove that the set $\left\{n \in \mathbb{N} \left\lvert\,\left\{b_{n}\right\}<\frac{1}{2016}\right.\right\}$ is an infinite set.

3 Let $A B C$ be an acute triange with B, C fixed. Let D be the midpoint of $B C$ and E, F be the foot of the perpendiculars from D to $A B, A C$, respectively.
a) Let O be the circumcenter of triangle $A B C$ and $M=E F \cap A O, N=E F \cap B C$. Prove that the circumcircle of triangle $A M N$ passes through a fixed point;
b) Assume that tangents of the circumcircle of triangle $A E F$ at E, F are intersecting at T. Prove that T is on a fixed line.

4 Let m and n be positive integers. A people planted two kind of different trees on a plot tabular grid size $m \times n$ (each square plant one tree.) A plant called inpressive if two conditions following conditions are met simultaneously:
i) The number of trees in each of kind is equal;
ii) In each row the number of tree of each kind is diffrenent not less than a half of number of cells on that row and In each colum the number of tree of each kind is diffrenent not less than a half of number of cells on that colum.
a) Find an inpressive plant when $m=n=2016$;
b) Prove that if there at least a inpressive plant then $4 \mid m$ and $4 \mid n$.

- Day 2

$1 \quad$ Find all $a \in \mathbb{R}$ such that there is function $f: \mathbb{R} \rightarrow \mathbb{R}$
i) $f(1)=2016$
ii) $f(x+y+f(y))=f(x)+a y \quad \forall x, y \in \mathbb{R}$

2 Given a triangle $A B C$ inscribed by circumcircle (O). The angles at B, C are acute angle. Let M on the arc $B C$ that doesn't contain A such that $A M$ is not perpendicular to $B C . A M$ meets the perpendicular bisector of $B C$ at T. The circumcircle $(A O T)$ meets (O) at $N(N \neq A)$.
a) Prove that $\angle B A M=\angle C A N$.
b) Let I be the incenter and G be the foor of the angle bisector of $\angle B A C$. $A I, M I, N I$ intersect (O) at D, E, F respectively. Let $P=D F \cap A M, Q=D E \cap A N$. The circle passes through P and touches $A D$ at I meets $D F$ at $H(H \neq D)$. The circle passes through Q and touches $A D$ at I meets $D E$ at $K(K \neq D)$. Prove that the circumcircle $(G H K)$ touches $B C$.

3 a) Prove that if n is an odd perfect number then n has the following form

$$
n=p^{s} m^{2}
$$

where p is prime has form $4 k+1, s$ is positive integers has form $4 h+1$, and $m \in \mathbb{Z}^{+}, m$ is not divisible by p.
b) Find all $n \in \mathbb{Z}^{+}, n>1$ such that $n-1$ and $\frac{n(n+1)}{2}$ is perfect number

