Art of Problem Solving

AoPS Community

District Olympiad 2022

www.artofproblemsolving.com/community/c3016625
by oVlad, pyramid_fan90

- \quad Grade 9

P1 Let $f: \mathbb{N}^{*} \rightarrow \mathbb{N}^{*}$ be a function such that $\frac{x^{3}+3 x^{2} f(y)}{x+f(y)}+\frac{y^{3}+3 y^{2} f(x)}{y+f(x)}=\frac{(x+y)^{3}}{f(x+y)},(\forall) x, y \in \mathbb{N}^{*}$. a) Prove that $f(1)=1$.b) Find function f.

P2 a) Prove that $2 x^{3}-3 x^{2}+1 \geq 0,(\forall) x \geq 0$.b) Let $x, y, z \geq 0$ such that $\frac{2}{1+x^{3}}+\frac{2}{1+y^{3}}+\frac{2}{1+z^{3}}=3$. Prove that $\frac{1-x}{1-x+x^{2}}+\frac{1-y}{1-y+y^{2}}+\frac{1-z}{1-z+z^{2}} \geq 0$.

P3 a) Solve over the positive integers $\left.3^{x}=x+2 . b\right)$ Find pairs $(x, y) \in \mathbb{N} \times \mathbb{N}$ such that $\left(x+3^{y}\right)$ and $\left(y+3^{x}\right)$ are consecutive.

P4 We call a set of 6 points in the plane splittable if we if can denote its elements by A, B, C, D, E and F in such a way that $\triangle A B C$ and $\triangle D E F$ have the same centroid.
-Construct a splittable set.
-Show that any set of 7 points has a subset of 6 points which is not splittable.

- \quad Grade 10

P1 Determine all $x \in(0,3 / 4)$ which satisfy

$$
\log _{x}(1-x)+\log _{2} \frac{1-x}{x}=\frac{1}{\left(\log _{2} x\right)^{2}}
$$

P2 Let z_{1}, z_{2} and z_{3} be complex numbers of modulus 1 , such that $\left|z_{i}-z_{j}\right| \geq \sqrt{2}$ for all $i \neq j \in$ $\{1,2,3\}$. Prove that

$$
\left|z_{1}+z_{2}\right|+\left|z_{2}+z_{3}\right|+\left|z_{3}+z_{2}\right| \leq 3
$$

Mathematical Gazette
P3 A positive integer $n \geq 4$ is called interesting if there exists a complex number z such that $|z|=1$ and

$$
1+z+z^{2}+z^{n-1}+z^{n}=0 .
$$

Find how many interesting numbers are smaller than 2022.

P4 Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which satisfy the following relationship for all $x, y \in \mathbb{R}$:

$$
f(f(y-x)-x f(y))+f(x)=y \cdot(1-f(x)) .
$$

- \quad Grade 11

P1 Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be functions which satisfy

$$
\inf _{x>a} f(x)=g(a) \text { and } \sup _{x<a} g(x)=f(a),
$$

for all $a \in \mathbb{R}$. Given that f has Darboux's Property (intermediate value property), show that functions f and g are continuous and equal to each other.

Mathematical Gazette

P2 Let $A, B \in \mathcal{M}_{3}(\mathbb{R})$ de matrices such that $A^{2}+B^{2}=O_{3}$. Prove that $\operatorname{det}(a A+b B)=0$ for any real numbers a and b.

P3 Let $\left(x_{n}\right)_{n \geq 1}$ be the sequence defined recursively as such:

$$
x_{1}=1, x_{n+1}=\frac{x_{1}}{n+1}+\frac{x_{2}}{n+2}+\cdots+\frac{x_{n}}{2 n} \forall n \geq 1 .
$$

Consider the sequence $\left(y_{n}\right)_{n \geq 1}$ such that $y_{n}=\left(x_{1}^{2}+x_{2}^{2}+\cdots x_{n}^{2}\right) / n$ for all $n \geq 1$. Prove that
$-x_{n+1}^{2}<y_{n} / 2$ and $y_{n+1}<(2 n+1) /(2 n+2) \cdot y_{n}$ for all $n \geq 1$;
$-\lim _{n \rightarrow \infty} x_{n}=0$.
P4 Let $A \in \mathcal{M}_{n}(\mathbb{C})$ where $n \geq 2$. Prove that if $m=\left|\left\{\operatorname{rank}\left(A^{k}\right)-\operatorname{rank}\left(A^{k+1}\right) ": k \in \mathbb{N}^{*}\right\}\right|$ then $n+1 \geq m(m+1) / 2$.

- \quad Grade 12

P1 Let e be the identity of monoid (M, \cdot) and $a \in M$ an invertible element. Prove that
-The set $M_{a}:=\left\{x \in M: a x^{2} a=e\right\}$ is nonempty;
-If $b \in M_{a}$ is invertible, then $b^{-1} \in M_{a}$ if and only if $a^{4}=e$;
-If $\left(M_{a}, \cdot\right)$ is a monoid, then $x^{2}=e$ for all $x \in M_{a}$.

Mathematical Gazette

P2 Let (G, \cdot) be a group and $H \neq G$ be a subgroup so that $x^{2}=y^{2}$ for all $x, y \in G \backslash H$. Show that (H, \cdot) is an Abelian group.

P3 Find all values of $n \in \mathbb{N}^{*}$ for which

$$
I_{n}:=\int_{0}^{\pi} \cos (x) \cdot \cos (2 x) \cdot \ldots \cdot \cos (n x) d x=0
$$

P4 Let $I \subseteq \mathbb{R}$ be an open interval and $f: I \rightarrow \mathbb{R}$ a strictly monotonous function. Prove that for all $c \in I$ there exist $a, b \in I$ such that $c \in(a, b)$ and

$$
\int_{a}^{b} f(x) d x=f(c) \cdot(b-a) .
$$

