

AoPS Community

District Olympiad 2022

www.artofproblemsolving.com/community/c3016625 by oVlad, pyramid_fan90

-	Grade 9
P1	Let $f : \mathbb{N}^* \to \mathbb{N}^*$ be a function such that $\frac{x^3 + 3x^2 f(y)}{x + f(y)} + \frac{y^3 + 3y^2 f(x)}{y + f(x)} = \frac{(x+y)^3}{f(x+y)}$, $(\forall)x, y \in \mathbb{N}^*$. a) Prove that $f(1) = 1$. b) Find function f .
P2	a) Prove that $2x^3 - 3x^2 + 1 \ge 0$, $(\forall)x \ge 0. b$) Let $x, y, z \ge 0$ such that $\frac{2}{1+x^3} + \frac{2}{1+y^3} + \frac{2}{1+z^3} = 3$. Prove that $\frac{1-x}{1-x+x^2} + \frac{1-y}{1-y+y^2} + \frac{1-z}{1-z+z^2} \ge 0$.
P3	a) Solve over the positive integers $3^x = x + 2$. b) Find pairs $(x, y) \in \mathbb{N} \times \mathbb{N}$ such that $(x + 3^y)$ and $(y + 3^x)$ are consecutive.
Ρ4	We call a set of 6 points in the plane <i>splittable</i> if we if can denote its elements by A, B, C, D, E and F in such a way that $\triangle ABC$ and $\triangle DEF$ have the same centroid.
	-Construct a splittable set. -Show that any set of 7 points has a subset of 6 points which is <i>not</i> splittable.
-	Grade 10
– P1	Grade 10Determine all $x \in (0, 3/4)$ which satisfy
- P1	Grade 10 Determine all $x \in (0, 3/4)$ which satisfy $\log_x(1-x) + \log_2 \frac{1-x}{x} = \frac{1}{(\log_2 x)^2}.$
- P1 P2	Grade 10 Determine all $x \in (0, 3/4)$ which satisfy $\log_x(1-x) + \log_2 \frac{1-x}{x} = \frac{1}{(\log_2 x)^2}.$ Let z_1, z_2 and z_3 be complex numbers of modulus 1, such that $ z_i - z_j \ge \sqrt{2}$ for all $i \ne j \in \{1, 2, 3\}$. Prove that
– P1 P2	Grade 10 Determine all $x \in (0, 3/4)$ which satisfy $\log_x(1-x) + \log_2 \frac{1-x}{x} = \frac{1}{(\log_2 x)^2}.$ Let z_1, z_2 and z_3 be complex numbers of modulus 1, such that $ z_i - z_j \ge \sqrt{2}$ for all $i \ne j \in \{1, 2, 3\}$. Prove that $ z_1 + z_2 + z_2 + z_3 + z_3 + z_2 \le 3.$
– P1 P2	Grade 10 Determine all $x \in (0, 3/4)$ which satisfy $\log_x(1-x) + \log_2 \frac{1-x}{x} = \frac{1}{(\log_2 x)^2}.$ Let z_1, z_2 and z_3 be complex numbers of modulus 1, such that $ z_i - z_j \ge \sqrt{2}$ for all $i \ne j \in \{1, 2, 3\}$. Prove that $ z_1 + z_2 + z_2 + z_3 + z_3 + z_2 \le 3.$ Mathematical Gazette
- P1 P2 P3	Grade 10Determine all $x \in (0, 3/4)$ which satisfy $\log_x(1-x) + \log_2 \frac{1-x}{x} = \frac{1}{(\log_2 x)^2}.$ Let z_1, z_2 and z_3 be complex numbers of modulus 1, such that $ z_i - z_j \ge \sqrt{2}$ for all $i \ne j \in \{1, 2, 3\}$. Prove that $ z_1 + z_2 + z_2 + z_3 + z_3 + z_2 \le 3.$ Mathematical GazetteA positive integer $n \ge 4$ is called <i>interesting</i> if there exists a complex number z such that $ z = 1$ and
- P1 P2 P3	Grade 10Determine all $x \in (0, 3/4)$ which satisfy $\log_x(1-x) + \log_2 \frac{1-x}{x} = \frac{1}{(\log_2 x)^2}.$ Let z_1, z_2 and z_3 be complex numbers of modulus 1, such that $ z_i - z_j \ge \sqrt{2}$ for all $i \ne j \in \{1, 2, 3\}$. Prove that $ z_1 + z_2 + z_2 + z_3 + z_3 + z_2 \le 3.$ Mathematical GazetteA positive integer $n \ge 4$ is called <i>interesting</i> if there exists a complex number z such that $ z = 1$ and $1 + z + z^2 + z^{n-1} + z^n = 0.$

AoPS Community

P4 Find all functions $f : \mathbb{R} \to \mathbb{R}$ which satisfy the following relationship for all $x, y \in \mathbb{R}$: $f(f(y - x) - xf(y)) + f(x) = y \cdot (1 - f(x)).$ Grade 11 **P1** Let $f, g : \mathbb{R} \to \mathbb{R}$ be functions which satisfy $\inf_{x > a} f(x) = g(a) \text{ and } \sup_{x < a} g(x) = f(a),$ for all $a \in \mathbb{R}$. Given that f has Darboux's Property (intermediate value property), show that functions *f* and *g* are continuous and equal to each other. Mathematical Gazette Let $A, B \in \mathcal{M}_3(\mathbb{R})$ de matrices such that $A^2 + B^2 = O_3$. Prove that det(aA + bB) = 0 for any **P2** real numbers a and b. **P3** Let $(x_n)_{n\geq 1}$ be the sequence defined recursively as such: $x_1 = 1, \ x_{n+1} = \frac{x_1}{n+1} + \frac{x_2}{n+2} + \dots + \frac{x_n}{2n} \ \forall n \ge 1.$ Consider the sequence $(y_n)_{n\geq 1}$ such that $y_n = (x_1^2 + x_2^2 + \cdots + x_n^2)/n$ for all $n \geq 1$. Prove that $-x_{n+1}^2 < y_n/2$ and $y_{n+1} < (2n+1)/(2n+2) \cdot y_n$ for all $n \ge 1$; $-\lim_{n \to \infty} x_n = 0.$ Let $A \in \mathcal{M}_n(\mathbb{C})$ where $n \geq 2$. Prove that if $m = |\{\operatorname{rank}(A^k) - \operatorname{rank}(A^{k+1})^n : k \in \mathbb{N}^*\}|$ then **P4** $n+1 \ge m(m+1)/2.$ Grade 12 _ Let *e* be the identity of monoid (M, \cdot) and $a \in M$ an invertible element. Prove that **P1** -The set $M_a := \{x \in M : ax^2a = e\}$ is nonempty; -If $b \in M_a$ is invertible, then $b^{-1} \in M_a$ if and only if $a^4 = e$; -If (M_a, \cdot) is a monoid, then $x^2 = e$ for all $x \in M_a$. Mathematical Gazette Let (G, \cdot) be a group and $H \neq G$ be a subgroup so that $x^2 = y^2$ for all $x, y \in G \setminus H$. Show that **P2** (H, \cdot) is an Abelian group.

AoPS Community

P3 Find all values of $n \in \mathbb{N}^*$ for which

$$I_n := \int_0^\pi \cos(x) \cdot \cos(2x) \cdot \ldots \cdot \cos(nx) \, dx = 0.$$

P4 Let $I \subseteq \mathbb{R}$ be an open interval and $f : I \to \mathbb{R}$ a strictly monotonous function. Prove that for all $c \in I$ there exist $a, b \in I$ such that $c \in (a, b)$ and

$$\int_{a}^{b} f(x) \, dx = f(c) \cdot (b-a).$$

Act of Problem Solving is an ACS WASC Accredited School.