Art of Problem Solving

AoPS Community

Finals 2022

www.artofproblemsolving.com/community/c3018850
by Tintarn, timon92

- Day 1

1 Let $A B C$ be an acute triangle with $A B<A C$. The angle bisector of $B A C$ intersects the side $B C$ and the circumcircle of $A B C$ at D and $M \neq A$, respectively. Points X and Y are chosen so that $M X \perp A B, B X \perp M B, M Y \perp A C$, and $C Y \perp M C$. Prove that the points X, D, Y are collinear.

2 Let $m, n \geq 2$ be given integers. Prove that there exist positive integers $a_{1}<a_{2}<\ldots<a_{m}$ so that for any $1 \leq i<j \leq m$ the number $\frac{a_{j}}{a_{j}-a_{i}}$ is an integer divisible by n.

3 One has marked n points on a circle and has drawn a certain number of chords whose endpoints are the marked points. It turned out that the following property is satisfied: whenever any 2021 drawn chords are removed one can join any two marked points by a broken line composed of some of the remaining drawn chords. Prove that one can remove some of the drawn chords so that at most $2022 n$ chords remain and the property described above is preserved.

- Day 2

4 Find all triples (a, b, c) of real numbers satisfying the system $\left\{\begin{array}{l}a^{3}+b^{2} c=a c \\ b^{3}+c^{2} a=b a \\ c^{3}+a^{2} b=c b\end{array}\right.$
5 Let $A B C$ be a triangle satisfying $A B<A C$. Let M be the midpoint of $B C$. A point P lies on the segment $A B$ with $A P>P B$. A point Q lies on the segment $A C$ with $\angle M P A=\angle A Q M$. The perpendicular bisectors of $B C$ and $P Q$ intersect at S. Prove that $\angle B A C+\angle Q S P=\angle Q M P$.
$6 \quad$ A prime number p and a positive integer n are given. Prove that one can colour every one of the numbers $1,2, \ldots, p-1$ using one of the $2 n$ colours so that for any $i=2,3, \ldots, n$ the sum of any i numbers of the same colour is not divisible by p.

