AoPS Community

Moldova Team Selection Test 2022

www.artofproblemsolving.com/community/c3018904
by augustin_p

- Day 1

1 Show that for every integer $n \geq 2$ the number

$$
a=n^{5 n-1}+n^{5 n-2}+n^{5 n-3}+n+1
$$

is a composite number.
2 Real numbers a, b, c, d satisfy

$$
a^{2}+b^{2}+c^{2}+d^{2}=4 .
$$

Find the greatest possible value of

$$
E(a, b, c, d)=a^{4}+b^{4}+c^{4}+d^{4}+4(a+b+c+d)^{2} .
$$

3 Let n be a positive integer. On a board there are written all integers from 1 to n. Alina does n moves consecutively: for every integer $m(1 \leq m \leq n)$ the move m consists in changing the sign of every number divisible by m. At the end Alina sums the numbers. Find this sum.

4 In the acute triangle $A B C$ the point M is on the side $B C$. The inscribed circle of triangle $A B M$ touches the sides $B M, M A$ and $A B$ in points D, E and F, and the inscribed circle of triangle $A C M$ touches the sides $C M, M A$ and $A C$ in points X, Y and Z. The lines $F D$ and $Z X$ intersect in point H. Prove that lines $A H, X Y$ and $D E$ are concurrent.

- Day 2

$5 \quad$ The function $f: \mathbb{N} \rightarrow \mathbb{N}$ verifies: 1$) f(n+2)-2022 \cdot f(n+1)+2021 \cdot f(n)=0, \forall n \in \mathbb{N}$; 2) $f\left(20^{22}\right)=f\left(22^{20}\right)$; 3) $f(2021)=2022$.

Find all possible values of $f(2022)$.
6 Let A be a point outside of the circle Ω. Tangents from A touch Ω in points B and C. Point C, collinear with A and P, is between A and P, such that the circumcircle of triangle $A B P$ intersects Ω again in point E. Point Q is on the segment $B P$, such that $\angle P E Q=2 \cdot \angle A P B$. Prove that the lines $B P$ and $C Q$ are perpendicular.
$7 \quad$ Let $f: \mathbb{N} \rightarrow \mathbb{N}, f(n)=n^{2}-69 n+2250$ be a function. Find the prime number p, for which the sum of the digits of the number $f\left(p^{2}+32\right)$ is as small as possible.

AoPS Community

2022 Moldova Team Selection Test

8 a) Let $n(n \geq 2)$ be an integer. On a line there are n distinct (pairwise distinct) sets of points, such that for every integer $k(1 \leq k \leq n)$ the union of every k sets contains exactly $k+1$ points. Show that there is always a point that belongs to every set.
b) Is the same conclusion true if there is an infinity of distinct sets of points such that for every positive integer k the union of every k sets contains exactly $k+1$ points?

- Day 3
$9 \quad$ Let n be a positive integer. A grid of dimensions $n \times n$ is divided in $n^{2} 1 \times 1$ squares. Every segment of length 1 (side of a square) from this grid is coloured in blue or red. The number of red segments is not greater than n^{2}. Find all positive integers n, for which the grid always will cointain at least one 1×1 square which has at least three blue sides.

10 Let $P(X)$ be a polynomial with positive coefficients. Show that for every integer $n \geq 2$ and every n positive numbers $x_{1}, x_{2}, \ldots, x_{n}$ the following inequality is true:

$$
P\left(\frac{x_{1}}{x_{2}}\right)^{2}+P\left(\frac{x_{2}}{x_{3}}\right)^{2}+\ldots+P\left(\frac{x_{n}}{x_{1}}\right)^{2} \geq n \cdot P(1)^{2} .
$$

When does the equality take place?
11 Let Ω be the circumcircle of triangle $A B C$ such that the tangents to Ω in points B and C intersect in P. The squares $A B B_{1} B_{2}$ and $A C C_{1} C_{2}$ are constructed on the sides $A B$ and $A C$ in the exterior of triangle $A B C$, such that the lines $B_{1} B_{2}$ and $C_{1} C_{2}$ intersect in point Q. Prove that P, A, and Q are collinear.

12 Let $\left(x_{n}\right)_{n \geq 1}$ be a sequence that verifies:

$$
x_{1}=1, \quad x_{2}=7, \quad x_{n+1}=x_{n}+3 x_{n-1}, \forall n \geq 2 .
$$

Prove that for every prime number p the number $x_{p}-1$ is divisible by $3 p$.

