

AoPS Community

Moldova Team Selection Test 2022

www.artofproblemsolving.com/community/c3018904 by augustin_p

– Day 1

1 Show that for every integer $n \ge 2$ the number

$$a = n^{5n-1} + n^{5n-2} + n^{5n-3} + n + 1$$

is a composite number.

2 Real numbers *a*, *b*, *c*, *d* satisfy

$$a^2 + b^2 + c^2 + d^2 = 4.$$

Find the greatest possible value of

$$E(a, b, c, d) = a^4 + b^4 + c^4 + d^4 + 4(a + b + c + d)^2.$$

- **3** Let *n* be a positive integer. On a board there are written all integers from 1 to *n*. Alina does *n* moves consecutively: for every integer m ($1 \le m \le n$) the move *m* consists in changing the sign of every number divisible by *m*. At the end Alina sums the numbers. Find this sum.
- 4 In the acute triangle *ABC* the point *M* is on the side *BC*. The inscribed circle of triangle *ABM* touches the sides *BM*, *MA* and *AB* in points *D*, *E* and *F*, and the inscribed circle of triangle *ACM* touches the sides *CM*, *MA* and *AC* in points *X*, *Y* and *Z*. The lines *FD* and *ZX* intersect in point *H*. Prove that lines *AH*, *XY* and *DE* are concurrent.
- Day 2
- **5** The function $f : \mathbb{N} \to \mathbb{N}$ verifies: $1)f(n+2) 2022 \cdot f(n+1) + 2021 \cdot f(n) = 0, \forall n \in \mathbb{N};$ $2)f(20^{22}) = f(22^{20}); 3)f(2021) = 2022.$ Find all possible values of f(2022).
- **6** Let *A* be a point outside of the circle Ω . Tangents from *A* touch Ω in points *B* and *C*. Point *C*, collinear with *A* and *P*, is between *A* and *P*, such that the circumcircle of triangle *ABP* intersects Ω again in point *E*. Point *Q* is on the segment *BP*, such that $\angle PEQ = 2 \cdot \angle APB$. Prove that the lines *BP* and *CQ* are perpendicular.
- 7 Let $f : \mathbb{N} \to \mathbb{N}$, $f(n) = n^2 69n + 2250$ be a function. Find the prime number p, for which the sum of the digits of the number $f(p^2 + 32)$ is as small as possible.

AoPS Community

2022 Moldova Team Selection Test

a) Let n (n ≥ 2) be an integer. On a line there are n distinct (pairwise distinct) sets of points, such that for every integer k (1 ≤ k ≤ n) the union of every k sets contains exactly k + 1 points. Show that there is always a point that belongs to every set.
b) Is the same conclusion true if there is an infinity of distinct sets of points such that for every positive integer k the union of every k sets contains exactly k + 1 points?

```
– Day 3
```

- 9 Let *n* be a positive integer. A grid of dimensions $n \times n$ is divided in $n^2 1 \times 1$ squares. Every segment of length 1 (side of a square) from this grid is coloured in blue or red. The number of red segments is not greater than n^2 . Find all positive integers *n*, for which the grid always will cointain at least one 1×1 square which has at least three blue sides.
- **10** Let P(X) be a polynomial with positive coefficients. Show that for every integer $n \ge 2$ and every n positive numbers $x_1, x_2, ..., x_n$ the following inequality is true:

$$P\left(\frac{x_1}{x_2}\right)^2 + P\left(\frac{x_2}{x_3}\right)^2 + \ldots + P\left(\frac{x_n}{x_1}\right)^2 \ge n \cdot P(1)^2.$$

When does the equality take place?

- 11 Let Ω be the circumcircle of triangle ABC such that the tangents to Ω in points B and C intersect in P. The squares ABB_1B_2 and ACC_1C_2 are constructed on the sides AB and AC in the exterior of triangle ABC, such that the lines B_1B_2 and C_1C_2 intersect in point Q. Prove that P, A, and Qare collinear.
- **12** Let $(x_n)_{n>1}$ be a sequence that verifies:

 $x_1 = 1$, $x_2 = 7$, $x_{n+1} = x_n + 3x_{n-1}$, $\forall n \ge 2$.

Prove that for every prime number p the number $x_p - 1$ is divisible by 3p.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱