

AoPS Community

2022 EGMO

EGMO 2022

www.artofproblemsolving.com/community/c3024020 by oVlad, luminescent, v4913, PieAreSquared

_	Day 1
1	Let <i>ABC</i> be an acute-angled triangle in which $BC < AB$ and $BC < CA$. Let point <i>P</i> lie on segment <i>AB</i> and point <i>Q</i> lie on segment <i>AC</i> such that $P \neq B$, $Q \neq C$ and $BQ = BC = CP$. Let <i>T</i> be the circumcenter of triangle <i>APQ</i> , <i>H</i> the orthocenter of triangle <i>ABC</i> , and <i>S</i> the point of intersection of the lines <i>BQ</i> and <i>CP</i> . Prove that <i>T</i> , <i>H</i> , and <i>S</i> are collinear.
2	Let $\mathbb{N} = \{1, 2, 3,\}$ be the set of all positive integers. Find all functions $f : \mathbb{N} \to \mathbb{N}$ such that for any positive integers a and b , the following two conditions hold: (1) $f(ab) = f(a)f(b)$, and (2) at least two of the numbers $f(a)$, $f(b)$, and $f(a + b)$ are equal.
3	An infinite sequence of positive integers $a_1, a_2,$ is called <i>good</i> if (1) a_1 is a perfect square, and (2) for any integer $n \ge 2$, a_n is the smallest positive integer such that $na_1 + (n-1)a_2 + \cdots + 2a_{n-1} + a_n$
	is a perfect square. Prove that for any good sequence a_1, a_2, \ldots , there exists a positive integer k such that $a_n = a_k$ for all integers $n \ge k$. (reposting because the other thread didn't get moved)
-	Day 2
4	Given a positive integer $n \ge 2$, determine the largest positive integer N for which there exist $N+1$ real numbers a_0, a_1, \ldots, a_N such that (1) $a_0 + a_1 = -\frac{1}{n}$, and (2) $(a_k + a_{k-1})(a_k + a_{k+1}) = a_{k-1} - a_{k+1}$ for $1 \le k \le N-1$.
5	For all positive integers n , k , let $f(n, 2k)$ be the number of ways an $n \times 2k$ board can be fully covered by nk dominoes of size 2×1 . (For example, $f(2,2) = 2$ and $f(3,2) = 3$.) Find all positive integers n such that for every positive integer k , the number $f(n, 2k)$ is odd.
6	Let $ABCD$ be a cyclic quadrilateral with circumcenter O . Let the internal angle bisectors at A and B meet at X , the internal angle bisectors at B and C meet at Y , the internal angle bisectors at C and D meet at Z , and the internal angle bisectors at D and A meet at W . Further, let AC and BD meet at P . Suppose that the points X, Y, Z, W, O , and P are distinct.

AoPS Community

Prove that O, X, Y, Z, W lie on the same circle if and only if P, X, Y, Z, and W lie on the same circle.

🐼 AoPS Online 🔯 AoPS Academy 🔯 AoPS 🕬