AoPS Community

EGMO 2022
www.artofproblemsolving.com/community/c3024020
by oVlad, luminescent, v4913, PieAreSquared

- Day 1

1 Let $A B C$ be an acute-angled triangle in which $B C<A B$ and $B C<C A$. Let point P lie on segment $A B$ and point Q lie on segment $A C$ such that $P \neq B, Q \neq C$ and $B Q=B C=C P$. Let T be the circumcenter of triangle $A P Q, H$ the orthocenter of triangle $A B C$, and S the point of intersection of the lines $B Q$ and $C P$. Prove that T, H, and S are collinear.

2 Let $\mathbb{N}=\{1,2,3, \ldots\}$ be the set of all positive integers. Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for any positive integers a and b, the following two conditions hold:
(1) $f(a b)=f(a) f(b)$, and
(2) at least two of the numbers $f(a), f(b)$, and $f(a+b)$ are equal.

3 An infinite sequence of positive integers a_{1}, a_{2}, \ldots is called good if
(1) a_{1} is a perfect square, and
(2) for any integer $n \geq 2, a_{n}$ is the smallest positive integer such that

$$
n a_{1}+(n-1) a_{2}+\cdots+2 a_{n-1}+a_{n}
$$

is a perfect square.
Prove that for any good sequence a_{1}, a_{2}, \ldots, there exists a positive integer k such that $a_{n}=a_{k}$ for all integers $n \geq k$.
(reposting because the other thread didn't get moved)

- \quad Day 2

4 Given a positive integer $n \geq 2$, determine the largest positive integer N for which there exist $N+1$ real numbers $a_{0}, a_{1}, \ldots, a_{N}$ such that (1) $a_{0}+a_{1}=-\frac{1}{n}$, and (2) $\left(a_{k}+a_{k-1}\right)\left(a_{k}+a_{k+1}\right)=$ $a_{k-1}-a_{k+1}$ for $1 \leq k \leq N-1$.

5 For all positive integers n, k, let $f(n, 2 k)$ be the number of ways an $n \times 2 k$ board can be fully covered by $n k$ dominoes of size 2×1. (For example, $f(2,2)=2$ and $f(3,2)=3$.) Find all positive integers n such that for every positive integer k, the number $f(n, 2 k)$ is odd.

6 Let $A B C D$ be a cyclic quadrilateral with circumcenter O. Let the internal angle bisectors at A and B meet at X, the internal angle bisectors at B and C meet at Y, the internal angle bisectors at C and D meet at Z, and the internal angle bisectors at D and A meet at W. Further, let $A C$ and $B D$ meet at P. Suppose that the points X, Y, Z, W, O, and P are distinct.

Prove that O, X, Y, Z, W lie on the same circle if and only if P, X, Y, Z, and W lie on the same circle.

