Art of Problem Solving

AoPS Community

2022 Bangladesh Mathematical Olympiad

Basically containing secondary national question (for now.)

 www.artofproblemsolving.com/community/c3025103 by ZETA_in_olympiad- Secondary

1 Find all solutions for real x,

$$
\lfloor x\rfloor^{3}-7\left\lfloor x+\frac{1}{3}\right\rfloor=-13 .
$$

2 In $\triangle A B C, \angle B A C$ is a right angle. $B P$ and $C Q$ are bisectors of $\angle B$ and $\angle C$ respectively, which intersect $A C$ and $A B$ at P and Q respectively. Two perpendicular segments $P M$ and $Q N$ are drawn on $B C$ from P and Q respectively. Find the value of $\angle M A N$ with proof.

3 Prove that if the numbers $3,4,5, \ldots, 3^{5}$ are partitioned into two disjoint sets, then in one of the sets the number a, b, c can be found such that $a b=c$. (a, b, c may not be pairwise distinct)

4 Pratyya and Payel have a number each, n and m respectively, where $n>m$. Everyday, Pratyya multiplies his number by 2 and then subtracts 2 from it, and Payel multiplies his number by 2 and then add 2 to it. In other words, on the first day their numbers will be $(2 n-2)$ and $(2 m+2)$ respectively. Find minimum integer x with proof such that if $n-m \geq x$, then Pratyya's number will be larger than Payel's number everyday.

5 In an acute triangle $\triangle A B C$, the midpoint of $B C$ is M. Perpendicular lines $B E$ and $C F$ are drawn respectively on $A C$ from B and on $A B$ from C such that E and F lie on $A C$ and $A B$ respectively. The midpoint of $E F$ is N. $M N$ intersects $A B$ at K. Prove that, the four points B, K, E, M lie on the same circle.

6 About 5 years ago, Joydip was researching on the number 2017. He understood that 2017 is a prime number. Then he took two integers a, b such that $0<a, b<2017$ and $a+b \neq 2017$. He created two sequences $A_{1}, A_{2}, \ldots, A_{2016}$ and $B_{1}, B_{2}, \ldots, B_{2016}$ where A_{k} is the remainder upon dividing $a k$ by 2017, and B_{k} is the remainder upon dividing $b k$ by 2017. Among the numbers $A_{1}+B_{1}, A_{2}+B_{2}, \ldots A_{2016}+B_{2016}$ count of those that are greater than 2017 is N. Prove that $N=1008$.

7 Sabbir noticed one day that everyone in the city of BdMO has a distinct word of length 10, where each letter is either A or B. Sabbir saw that two citizens are friends if one of their words can be altered a few times using a special rule and transformed into the other ones word. The rule is, if somewhere in the word $A B B$ is located consecutively, then these letters can be changed to $B B A$ or if $B B A$ is located somewhere in the word consecutively, then these letters can be changed to $A B B$ (if wanted, the word can be kept as it is, without making this change.) For
example $A A B B A$ can be transformed into $A A A B B$ (the opposite is also possible.) Now Sabbir made a team of N citizens where no one is friends with anyone. What is the highest value of N.

8 Solve the following problems -
A) Find any 158 consecutive integers such that the sum of digits for any of the numbers is not divisible by 17 .
B) Prove that, among any 159 consecutive integers there will always be at least one integer whose sum of digits is divisible by 17 .

