Art of Problem Solving
www.artofproblemsolving.com/community/c3027093
by Quidditch, parmenides51, Muradjl, Tsukuyomi, MarkBcc168, fastlikearabbit, SHARKYKESA, math90, ridgers

- \quad Day 1

1 Let x, y, z be positive reals such that $x y z=1$. Prove that

$$
\sum_{c y c} \frac{1}{\sqrt{x+2 y+6}} \leq \sum_{c y c} \frac{x}{\sqrt{x^{2}+4 \sqrt{y}+4 \sqrt{z}}}
$$

2 A positive integer $n<2017$ is given. Exactly n vertices of a regular 2017-gon are colored red, and the remaining vertices are colored blue. Prove that the number of isosceles triangles whose vertices are monochromatic does not depend on the chosen coloring (but does depend on n.)

4 Let $\triangle A B C$ be an acute triangle with altitudes $A A_{1}, B B_{1}, C C_{1}$ and orthocenter H. Let K, L be the midpoints of $B C_{1}, C B_{1}$. Let ℓ_{A} be the external angle bisector of $\angle B A C$. Let ℓ_{B}, ℓ_{C} be the lines through B, C perpendicular to ℓ_{A}. Let ℓ_{H} be the line through H parallel to ℓ_{A}. Prove that the centers of the circumcircles of $\triangle A_{1} B_{1} C_{1}, \triangle A K L$ and the rectangle formed by $\ell_{A}, \ell_{B}, \ell_{C}, \ell_{H}$ lie on the same line.

3 Does there exist an arithmetic progression with 2017 terms such that each term is not a perfect power, but the product of all 2017 terms is?

- Day 2

1 Determine all integers $n \geq 2$ having the following property: for any integers $a_{1}, a_{2}, \ldots, a_{n}$ whose sum is not divisible by n, there exists an index $1 \leq i \leq n$ such that none of the numbers

$$
a_{i}, a_{i}+a_{i+1}, \ldots, a_{i}+a_{i+1}+\ldots+a_{i+n-1}
$$

is divisible by n. Here, we let $a_{i}=a_{i-n}$ when $i>n$.
Proposed by Warut Suksompong, Thailand
2 For finite sets A, M such that $A \subseteq M \subset \mathbb{Z}^{+}$, we define

$$
f_{M}(A)=\{x \in M \mid x \text { is divisible by an odd number of elements of } A\} .
$$

Given a positive integer k, we call M k-colorable if it is possible to color the subsets of M with k colors so that for any $A \subseteq M$, if $f_{M}(A) \neq A$ then $f_{M}(A)$ and A have different colors. Determine the least positive integer k such that every finite set $M \subset \mathbb{Z}^{+}$is k -colorable.

3 Let S be a finite set, and let \mathcal{A} be the set of all functions from S to S. Let f be an element of \mathcal{A}, and let $T=f(S)$ be the image of S under f. Suppose that $f \circ g \circ f \neq g \circ f \circ g$ for every g in \mathcal{A} with $g \neq f$. Show that $f(T)=T$.

- Day 3

1 A rectangle \mathcal{R} with odd integer side lengths is divided into small rectangles with integer side lengths. Prove that there is at least one among the small rectangles whose distances from the four sides of \mathcal{R} are either all odd or all even.
Proposed by Jeck Lim, Singapore
2 Let O be the circumcenter of an acute triangle $A B C$. Line $O A$ intersects the altitudes of $A B C$ through B and C at P and Q, respectively. The altitudes meet at H. Prove that the circumcenter of triangle $P Q H$ lies on a median of triangle $A B C$.

3 Find the smallest positive integer n or show no such n exists, with the following property: there are infinitely many distinct n-tuples of positive rational numbers $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ such that both

$$
a_{1}+a_{2}+\cdots+a_{n} \quad \text { and } \quad \frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}
$$

are integers.

- Day 4

1 Let $a_{1}, a_{2}, \ldots a_{n}, k$, and M be positive integers such that

$$
\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}=k \quad \text { and } \quad a_{1} a_{2} \cdots a_{n}=M
$$

If $M>1$, prove that the polynomial

$$
P(x)=M(x+1)^{k}-\left(x+a_{1}\right)\left(x+a_{2}\right) \cdots\left(x+a_{n}\right)
$$

has no positive roots.
2 Let $\left(x_{1}, x_{2}, \ldots, x_{100}\right)$ be a permutation of $(1,2, \ldots, 100)$. Define

$$
S=\left\{m \mid m \text { is the median of }\left\{x_{i}, x_{i+1}, x_{i+2}\right\} \text { for some } i\right\} .
$$

Determine the minimum possible value of the sum of all elements of S.
3 Let $A B C C_{1} B_{1} A_{1}$ be a convex hexagon such that $A B=B C$, and suppose that the line segments $A A_{1}, B B_{1}$, and $C C_{1}$ have the same perpendicular bisector. Let the diagonals $A C_{1}$ and $A_{1} C$ meet at D, and denote by ω the circle $A B C$. Let ω intersect the circle $A_{1} B C_{1}$ again at $E \neq B$. Prove that the lines $B B_{1}$ and $D E$ intersect on ω.

- \quad Day 5

1 Let $A B C D E$ be a convex pentagon such that $A B=B C=C D, \angle E A B=\angle B C D$, and $\angle E D C=$ $\angle C B A$. Prove that the perpendicular line from E to $B C$ and the line segments $A C$ and $B D$ are concurrent.

2 Find all pairs (p, q) of prime numbers which $p>q$ and

$$
\frac{(p+q)^{p+q}(p-q)^{p-q}-1}{(p+q)^{p-q}(p-q)^{p+q}-1}
$$

is an integer.
3 Let $n>1$ be a given integer. An $n \times n \times n$ cube is composed of n^{3} unit cubes. Each unit cube is painted with one colour. For each $n \times n \times 1$ box consisting of n^{2} unit cubes (in any of the three possible orientations), we consider the set of colours present in that box (each colour is listed only once). This way, we get $3 n$ sets of colours, split into three groups according to the orientation.

It happens that for every set in any group, the same set appears in both of the other groups. Determine, in terms of n, the maximal possible number of colours that are present.

- \quad Day 6

$1 \quad$ Let E and F be points on side $B C$ of a triangle $\triangle A B C$. Points K and L are chosen on segments $A B$ and $A C$, respectively, so that $E K \| A C$ and $F L \| A B$. The incircles of $\triangle B E K$ and $\triangle C F L$ touches segments $A B$ and $A C$ at X and Y, respectively. Lines $A C$ and $E X$ intersect at M, and lines $A B$ and $F Y$ intersect at N. Given that $A X=A Y$, prove that $M N \| B C$.

2 Call a rational number short if it has finitely many digits in its decimal expansion. For a positive integer m, we say that a positive integer t is m-tastic if there exists a number $c \in\{1,2,3, \ldots, 2017\}$ such that $\frac{10^{t}-1}{c \cdot m}$ is short, and such that $\frac{10^{k}-1}{c \cdot m}$ is not short for any $1 \leq k<t$. Let $S(m)$ be the set of m-tastic numbers. Consider $S(m)$ for $m=1,2, \ldots$. What is the maximum number of elements in $S(m)$?

3 Let $n \geq 3$ be an integer. Let $a_{1}, a_{2}, \ldots, a_{n} \in[0,1]$ satisfy $a_{1}+a_{2}+\cdots+a_{n}=2$. Prove that

$$
\sqrt{1-\sqrt{a_{1}}}+\sqrt{1-\sqrt{a_{2}}}+\cdots+\sqrt{1-\sqrt{a_{n}}} \leq n-3+\sqrt{9-3 \sqrt{6}}
$$

- Day 7

1 Find all functions $g: R \rightarrow R$ for which there exists a strictly increasing function $f: R \rightarrow R$ such that $f(x+y)=f(x) g(y)+f(y) \forall x, y \in R$.

2 Sir Alex plays the following game on a row of 9 cells. Initially, all cells are empty. In each move, Sir Alex is allowed to perform exactly one of the following two operations:

- Choose any number of the form 2^{j}, where j is a non-negative integer, and put it into an empty cell.
- Choose two (not necessarily adjacent) cells with the same number in them; denote that number by 2^{j}. Replace the number in one of the cells with 2^{j+1} and erase the number in the other cell.
At the end of the game, one cell contains 2^{n}, where n is a given positive integer, while the other cells are empty. Determine the maximum number of moves that Sir Alex could have made, in terms of n.

Proposed by Warut Suksompong, Thailand

3 Let n be a fixed odd positive integer. For each odd prime p, define

$$
a_{p}=\frac{1}{p-1} \sum_{k=1}^{\frac{p-1}{2}}\left\{\frac{k^{2 n}}{p}\right\} .
$$

Prove that there is a real number c such that $a_{p}=c$ for infinitely many primes p.
[i]Note: $\{x\}=x-\lfloor x\rfloor$ is the fractional part of x.[/i]

- Day 8

1 Let n be a positive integer. Define a chameleon to be any sequence of $3 n$ letters, with exactly n occurrences of each of the letters a, b, and c. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon X, there exists a chameleon Y such that X cannot be changed to Y using fewer than $3 n^{2} / 2$ swaps.

2 A sequence of real numbers a_{1}, a_{2}, \ldots satisfies the relation

$$
a_{n}=-\max _{i+j=n}\left(a_{i}+a_{j}\right) \quad \text { for all } \quad n>2017 .
$$

Prove that the sequence is bounded, i.e., there is a constant M such that $\left|a_{n}\right| \leq M$ for all positive integers n.

3 A convex quadrilateral $A B C D$ has an inscribed circle with center I. Let I_{a}, I_{b}, I_{c} and I_{d} be the incenters of the triangles $D A B, A B C, B C D$ and $C D A$, respectively. Suppose that the common external tangents of the circles $A I_{b} I_{d}$ and $C I_{b} I_{d}$ meet at X, and the common external tangents of the circles $B I_{a} I_{c}$ and $D I_{a} I_{c}$ meet at Y. Prove that $\angle X I Y=90^{\circ}$.

- \quad Day 9

1 Let $p \geq 2$ be a prime number. Eduardo and Fernando play the following game making moves alternately: in each move, the current player chooses an index i in the set $\{0,1,2, \ldots, p-1\}$ that was not chosen before by either of the two players and then chooses an element a_{i} from the set $\{0,1,2,3,4,5,6,7,8,9\}$. Eduardo has the first move. The game ends after all the indices have been chosen .Then the following number is computed:

$$
M=a_{0}+a_{1} 10+a_{2} 10^{2}+\cdots+a_{p-1} 10^{p-1}=\sum_{i=0}^{p-1} a_{i} \cdot 10^{i}
$$

The goal of Eduardo is to make M divisible by p, and the goal of Fernando is to prevent this.
Prove that Eduardo has a winning strategy.
Proposed by Amine Natik, Morocco
2 In triangle $A B C$, let ω be the excircle opposite to A. Let D, E and F be the points where ω is tangent to $B C, C A$, and $A B$, respectively. The circle $A E F$ intersects line $B C$ at P and Q. Let M be the midpoint of $A D$. Prove that the circle $M P Q$ is tangent to ω.

3 An integer $n \geq 3$ is given. We call an n-tuple of real numbers $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ Shiny if for each permutation $y_{1}, y_{2}, \ldots, y_{n}$ of these numbers, we have

$$
\sum_{i=1}^{n-1} y_{i} y_{i+1}=y_{1} y_{2}+y_{2} y_{3}+y_{3} y_{4}+\cdots+y_{n-1} y_{n} \geq-1
$$

Find the largest constant $K=K(n)$ such that

$$
\sum_{1 \leq i<j \leq n} x_{i} x_{j} \geq K
$$

holds for every Shiny n-tuple $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

