Art of Problem Solving

AoPS Community

2020 Kazakhstan National Olympiad

This is a collection of problems from Kazakstan national olympiad 2020, including grade 9-11 problems. Due to covid-19, the olympiad was held online in one-day 4 problems format instead of usual two-days 6 problems.
www.artofproblemsolving.com/community/c3031888
by BatyrKHAN, Adilet160205, rightways, parmenides51

- \quad Grade 9

1 There are n lamps and k switches in a room. Initially, each lamp is either turned on or turned off. Each lamp is connected by a wire with 2020 switches. Switching a switch changes the state of a lamp, that is connected to it , to the opposite state. It is known that one can switch the switches so that all lamps will be turned on. Prove, that it is possible to achieve the same result by switching the switches no more than $\left\lfloor\frac{k}{2}\right\rfloor$ times.
Proposed by T. Zimanov
2 Let $x_{1}, x_{2}, \ldots, x_{n}$ be a real numbers such that

1) $1 \leq x_{1}, x_{2}, \ldots, x_{n} \leq 160$
2) $x_{i}^{2}+x_{j}^{2}+x_{k}^{2} \geq 2\left(x_{i} x_{j}+x_{j} x_{k}+x_{k} x_{i}\right)$ for all $1 \leq i<j<k \leq n$

Find the largest possible n.
3 Let p be a prime number and k, r are positive integers such that $p>r$. If $p k+r$ divides $p^{p}+1$ then prove that r divides k.

4 The incircle of the triangle $A B C$ touches the sides of $A B, B C, C A$ at points C_{0}, A_{0}, B_{0}, respectively. Let the point M be the midpoint of the segment connecting the vertex C_{0} with the intersection point of the altitudes of the triangle $A_{0} B_{0} C_{0}$, point N be the midpoint of the arc $A C B$ of the circumscribed circle of the triangle $A B C$. Prove that line $M N$ passes through the center of incircle of triangle $A B C$.

- \quad Grades 10-11

1 Find all pairs (m, n) of natural numbers such that $n^{4} \mid 2 m^{5}-1$ and $m^{4} \mid 2 n^{5}+1$.
2 Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that for any $x, y \in \mathbb{R}^{+}$the following equality holds:

$$
f(x) f(y)=f\left(\frac{x y}{x f(x)+y}\right) .
$$

\mathbb{R}^{+}denotes the set of positive real numbers.

3 A point N is marked on the median $C M$ of the triangle $A B C$ so that $M N \cdot M C=A B^{2} / 4$. Lines $A N$ and $B N$ intersect the circumcircle $\triangle A B C$ for the second time at points P and Q, respectively. R is the point of segment $P Q$, nearest to Q, such that $\angle N R C=\angle B N C . S$ is the point of the segment $P Q$ closest to P such that $\angle N S C=\angle A N C$. Prove that $R N=S N$.

4 Alice and Bob play a game on the infinite side of a checkered strip, in which the cells are numbered with consecutive integers from left to right (..., $-2,-1,0,1,2, \ldots)$. Alice in her turn puts one cross in any free cell, and Bob in his turn puts zeros in any 2020 free cells. Alice will win if he manages to get such 4 cells marked with crosses, the corresponding cell numbers will form an arithmetic progression. Bob's goal in this game is to prevent Alice from winning. They take turns and Alice moves first. Will Alice be able to win no matter how Bob plays?

