Art of Problem Solving

AoPS Community

www.artofproblemsolving.com/community/c3031915
by BatyrKHAN, rightways, Aldinash, Kamran011

- \quad Grade 9

1 Given $a, b, c>0$ such that

$$
a+b+c+\frac{1}{a b c}=\frac{19}{2}
$$

What is the greatest value for a ?

- \quad Grade 10

3 Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be sequences of real numbers, such that $a_{1}=b_{1}=1, a_{n+1}=a_{n}+\sqrt{a_{n}}$, $b_{n+1}=b_{n}+\sqrt[3]{b_{n}}$ for all positive integers n. Prove that there is a positive integer n for which the inequality $a_{n} \leq b_{k}<a_{n+1}$ holds for exactly 2021 values of k.
$5 \quad$ Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that

$$
f(x)^{2}=f(x y)+f(x+f(y))-1
$$

for all $x, y \in \mathbb{R}^{+}$

6 See problem 5 of grade 11

- \quad Grade 11

4 Given acute triangle $A B C$ with circumcircle Γ and altitudes $A D, B E, C F$, line $A D$ cuts Γ again at P and $P F, P E$ meet Γ again at R, Q. Let O_{1}, O_{2} be the circumcenters of $\triangle B F R$ and $\triangle C E Q$ respectively. Prove that $O_{1} O_{2}$ bisects $\overline{E F}$.

5 Let a be a positive integer. Prove that for any pair (x, y) of integer solutions of equation

$$
x\left(y^{2}-2 x^{2}\right)+x+y+a=0
$$

we have:

$$
|x| \leqslant a+\sqrt{2 a^{2}+2}
$$

