Art of Problem Solving
www.artofproblemsolving.com/community/c3031916
by BatyrKHAN, rightways, AriizuZDR, Adilet160205

- \quad Grade 9

$1 \quad C H$ is an altitude in a right triangle $A B C\left(\angle C=90^{\circ}\right)$. Points P and Q lie on $A C$ and $B C$ respectively such that $H P \perp A C$ and $H Q \perp B C$. Let M be an arbitrary point on $P Q$. A line passing through M and perpendicular to $M H$ intersects lines $A C$ and $B C$ at points R and S respectively. Let M_{1} be another point on $P Q$ distinct from M. Points R_{1} and S_{1} are determined similarly for M_{1}. Prove that the ratio $\frac{R R_{1}}{S S_{1}}$ is constant.

2 Given a prime number p. It is known that for each integer a such that $1<a<p / 2$ there exist integer b such that $p / 2<b<p$ and $p \mid a b-1$. Find all such p.

3 See problem 2 from grades 10-11
$4 \quad P$ and Q are points on angle bisectors of two adjacent angles. Let $P A, P B, Q C$ and $Q D$ be altitudes on the sides of these adjacent angles. Prove that lines $A B, C D$ and $P Q$ are concurrent.

5 For positive reals a, b, c with $\sqrt{a}+\sqrt{b}+\sqrt{c} \geq 3$ prove that

$$
\frac{a^{3}}{a^{2}+b}+\frac{b^{3}}{b^{2}+c}+\frac{c^{3}}{c^{2}+a} \geq \frac{3}{2}
$$

6 Numbers from 1 to 49 are randomly placed in a 35×35 table such that number i is used exactly i times. Some random cells of the table are removed so that table falls apart into several connected (by sides) polygons. Among them, the one with the largest area is chosen (if there are several of the same largest areas, a random one of them is chosen). What is the largest number of cells that can be removed that guarantees that in the chosen polygon there is a number which occurs at least 15 times?

```
- Grades 10-11
```

1 Given a triangle $A B C$ draw the altitudes $A D, B E, C F$. Take points P and Q on $A B$ and $A C$, respectively such that $P Q \| B C$. Draw the circles with diameters $B Q$ and $C P$ and let them intersect at points R
and T where R is closer to A than T. Draw the altitudes $B N$ and $C M$ in the triangle $B C R$. Prove that $F M, E N$ and $A D$ are concurrent.

2 We define the function $Z(A)$ where we write the digits of A in base 10 form in reverse. (For example: $Z(521)=125)$. Call a number A good if the first and last digits of A are different, none of it's digits are 0 and the equality:

$$
Z\left(A^{2}\right)=(Z(A))^{2}
$$

happens. Find all such good numbers greater than 10^{6}.
$3 \quad$ Given $m \in \mathbb{N}$. Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that

$$
f(f(x)+y)-f(x)=\left(\frac{f(y)}{y}-1\right) x+f^{m}(y)
$$

holds for all $x, y \in \mathbb{R}^{+}$.
($f^{m}(x)=f$ applies m times.)
4 Let $P(x)$ be a polynomial with positive integer coefficients such that $\operatorname{deg}(P)=699$. Prove that if $P(1) \leq 2022$, then there exist some consecutive coefficients such that their sum is 22,55 , or 77.

5 Given a cyclic quadrilateral $A B C D$, let it's diagonals intersect at the point O. Take the midpoints of $A D$ and $B C$ as M and N respectively. Take a point S on the arc $A B$ not containing C or D such that

$$
\angle S M A=\angle S N B
$$

Prove that if the diagonals of the quadrilateral made from the lines $S M, S N, A B$, and $C D$ intersect at the point T, then S, O, and T are collinear.

6 Given an infinite positive integer sequence $\left\{x_{i}\right\}$ such that

$$
x_{n+2}=x_{n} x_{n+1}+1
$$

Prove that for any positive integer i there exists a positive integer j such that x_{j}^{j} is divisible by x_{i}^{i}.
[i]Remark: Unfortunately, there was a mistake in the problem statement during the contest itself. In the last sentence, it should say "for any positive integer $i>1$..." $[/ i]$

