Art of Problem Solving

AoPS Community

2022 Korea -Final Round

Final Round - 2021 Korea

www.artofproblemsolving.com/community/c3033117
by gnoka, Olympiadium, scnwust

Day 1

P1 Let $A B C$ be an acute triangle with circumcenter O, and let D, E, and F be the feet of altitudes from A, B, and C to sides $B C, C A$, and $A B$, respectively. Denote by P the intersection of the tangents to the circumcircle of $A B C$ at B and C. The line through P perpendicular to $E F$ meets $A D$ at Q, and let R be the foot of the perpendicular from A to $E F$. Prove that $D R$ and $O Q$ are parallel.

P2 There are n boxes A_{1}, \ldots, A_{n} with non-negative number of pebbles inside it(so it can be empty). Let a_{n} be the number of pebbles in the box A_{n}. There are total $3 n$ pebbles in the boxes. From now on, Alice plays the following operation.

In each operation, Alice choose one of these boxes which is non-empty. Then she divide this pebbles into n group such that difference of number of pebbles in any two group is at most 1 , and put these n group of pebbles into n boxes one by one. This continues until only one box has all the pebbles, and the rest of them are empty. And when it's over, define Length as the total number of operations done by Alice.
Let $f\left(a_{1}, \ldots, a_{n}\right)$ be the smallest value of Length among all the possible operations on (a_{1}, \ldots, a_{n}). Find the maximum possible value of $f\left(a_{1}, \ldots, a_{n}\right)$ among all the ordered pair $\left(a_{1}, \ldots, a_{n}\right)$, and find all the ordered pair $\left(a_{1}, \ldots, a_{n}\right)$ that equality holds.

P3 A function $g: \mathbb{R} \rightarrow \mathbb{R}$ is given such that its range is a finite set. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfies

$$
2 f(x+g(y))=f(2 g(x)+y)+f(x+3 g(y))
$$

for all $x, y \in \mathbb{R}$.

Day 2

P4 Let $A B C$ be a scalene triangle with incenter I and let $A I$ meet the circumcircle of triangle $A B C$ again at M. The incircle ω of triangle $A B C$ is tangent to sides $A B, A C$ at D, E, respectively. Let O be the circumcenter of triangle $B D E$ and let L be the intersection of ω and the altitude from A to $B C$ so that A and L lie on the same side with respect to $D E$. Denote by Ω a circle centered at O and passing through L, and let $A L$ meet Ω again at N.

Prove that the lines $L D$ and $M B$ meet on the circumcircle of triangle $L N E$.

P5 Find all positive integers m such that there exists integers x and y that satisfies

$$
m \mid x^{2}+11 y^{2}+2022
$$

P6 Set X is called fancy if it satisfies all of the following conditions:
-The number of elements of X is 2022 .
-Each element of X is a closed interval contained in $[0,1]$.
-For any real number $r \in[0,1]$, the number of elements of X containing r is less than or equal to 1011.

For fancy sets A, B, and intervals $I \in A, J \in B$, denote by $n(A, B)$ the number of pairs (I, J) such that $I \cap J \neq \emptyset$. Determine the maximum value of $n(A, B)$.

