

AoPS Community

Final Round - 2021 Korea

www.artofproblemsolving.com/community/c3033117 by gnoka, Olympiadium, scnwust

Day	1
P1	Let ABC be an acute triangle with circumcenter O , and let D , E , and F be the feet of altitudes from A , B , and C to sides BC , CA , and AB , respectively. Denote by P the intersection of the tangents to the circumcircle of ABC at B and C . The line through P perpendicular to EF meets AD at Q , and let R be the foot of the perpendicular from A to EF . Prove that DR and OQ are parallel.
P2	There are <i>n</i> boxes $A_1,, A_n$ with non-negative number of pebbles inside it(so it can be empty). Let a_n be the number of pebbles in the box A_n . There are total $3n$ pebbles in the boxes. From now on, Alice plays the following operation.
	In each operation, Alice choose one of these boxes which is non-empty. Then she divide this pebbles into n group such that difference of number of pebbles in any two group is at most 1, and put these n group of pebbles into n boxes one by one. This continues until only one box has all the pebbles, and the rest of them are empty. And when it's over, define $Length$ as the total number of operations done by Alice.
	Let $f(a_1,, a_n)$ be the smallest value of $Length$ among all the possible operations on $(a_1,, a_n)$. Find the maximum possible value of $f(a_1,, a_n)$ among all the ordered pair $(a_1,, a_n)$, and find all the ordered pair $(a_1,, a_n)$ that equality holds.
Р3	A function $g: \mathbb{R} \to \mathbb{R}$ is given such that its range is a finite set. Find all functions $f: \mathbb{R} \to \mathbb{R}$ that satisfies
	2f(x + g(y)) = f(2g(x) + y) + f(x + 3g(y))
	for all $x, y \in \mathbb{R}$.
Day	2
Ρ4	Let ABC be a scalene triangle with incenter I and let AI meet the circumcircle of triangle ABC again at M . The incircle ω of triangle ABC is tangent to sides AB , AC at D , E , respectively. Let O be the circumcenter of triangle BDE and let L be the intersection of ω and the altitude from A to BC so that A and L lie on the same side with respect to DE . Denote by Ω a circle centered at O and passing through L , and let AL meet Ω again at N .

Prove that the lines LD and MB meet on the circumcircle of triangle LNE.

AoPS Community

P5

AcPS Online On AcPS Academy AcPS Content of Problem Solving is an ACS WASC Accredited School.

$$m \mid x^2 + 11y^2 + 2022.$$

Find all positive integers m such that there exists integers x and y that satisfies

P6 Set *X* is called *fancy* if it satisfies all of the following conditions:

-The number of elements of *X* is 2022. -Each element of *X* is a closed interval contained in [0, 1]. -For any real number $r \in [0, 1]$, the number of elements of *X* containing *r* is less than or equal to 1011.

For *fancy* sets A, B, and intervals $I \in A, J \in B$, denote by n(A, B) the number of pairs (I, J) such that $I \cap J \neq \emptyset$. Determine the maximum value of n(A, B).