Art of Problem Solving

AoPS Community

Vietnam Team Selection Test 2022

www.artofproblemsolving.com/community/c3034681
by parmenides51, IMOStarter

- \quad Day 1

1 Given a real number α and consider function $\varphi(x)=x^{2} e^{\alpha x}$ for $x \in \mathbb{R}$. Find all function $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy:

$$
f(\varphi(x)+f(y))=y+\varphi(f(x))
$$

forall $x, y \in \mathbb{R}$
2 Given a convex polyhedron with 2022 faces. In 3 arbitary faces, there are already number 26; 4 and 2022 (each face contains 1 number). They want to fill in each other face a real number that is an arithmetic mean of every numbers in faces that have a common edge with that face. Prove that there is only one way to fill all the numbers in that polyhedron.

3 Let $A B C D$ be a parallelogram, $A C$ intersects $B D$ at I. Consider point G inside $\triangle A B C$ that satisfy $\angle I A G=\angle I B G \neq 45^{\circ}-\frac{\angle A I B}{4}$. Let E, G be projections of C on $A G$ and D on $B G$. The E - median line of $\triangle B E F$ and F - median line of $\triangle A E F$ intersects at H. a) Prove that $A F, B E$ and $I H$ concurrent. Call the concurrent point $L . b$) Let K be the intersection of $C E$ and $D F$. Let J circumcenter of $(L A B)$ and M, N are respectively be circumcenters of $(E I J)$ and $(F I J)$. Prove that $E M, F N$ and the line go through circumcenters of $(G A B),(K C D)$ are concurrent.

- Day 2

4 An acute, non-isosceles triangle $A B C$ is inscribed in a circle with centre O. A line go through O and midpoint I of $B C$ intersects $A B, A C$ at E, F respectively. Let D, G be reflections to A over O and circumcentre of $(A E F)$, respectively. Let K be the reflection of O over circumcentre of $(O B C)$. a) Prove that D, G, K are collinear. b) Let M, N are points on $K B, K C$ that $I M \perp A C$, $I N \perp A B$. The midperpendiculars of $I K$ intersects $M N$ at H. Assume that $I H$ intersects $A B, A C$ at P, Q respectively. Prove that the circumcircle of $\triangle A P Q$ intersects (O) the second time at a point on $A I$.

5 A fractional number x is called pretty if it has finite expression in base $-b$ numeral system, b is a positive integer in [2;2022]. Prove that there exists finite positive integers $n \geq 4$ that with every m in $\left(\frac{2 n}{3} ; n\right)$ then there is at least one pretty number between $\frac{m}{n-m}$ and $\frac{n-m}{m}$

6 Given a set $A=\{1 ; 2 ; \ldots ; 4044\}$. They color 2022 numbers of them by white and the rest of them by black. With each $i \in A$, called the important number of i be the number of all white numbers smaller than i and black numbers larger than i. With every natural number m, find all positive integers k that exist a way to color the numbers that can get k important numbers equal to m.

