AoPS Community

2017 Azerbaijan Junior National Olympiad

www.artofproblemsolving.com/community/c3034702
by Iora, parmenides51

P1 Solve the system of equation for $(x, y) \in \mathbb{R}$

$$
\left\{\begin{array}{c}
\sqrt{x^{2}+y^{2}}+\sqrt{(x-4)^{2}+(y-3)^{2}}=5 \\
3 x^{2}+4 x y=24
\end{array}\right.
$$

Explain your answer

P2 For all $n>1$ let $f(n)$ be the sum of the smallest factor of n that is not 1 and n. The computer prints $f(2), f(3), f(4), \ldots$ with order: $4,6,6, \ldots$ (Because $f(2)=2+2=4, f(3)=3+3=6, f(4)=$ $4+2=6$ etc.). In this infinite sequence, how many times will be 2015 and 2016 written? (Explain your answer)

P3 Show that $\frac{(x+y+z)^{2}}{3} \geq x \sqrt{y z}+y \sqrt{z x}+z \sqrt{x y}$ for all non-negative reals x, y, z.
P4 A Rhombus and an Isosceles trapezoid that has same area is drawn in the same circle's outside. Compare their acute angles
(explain your answer)
P5 A student firstly wrote $x=3$ on the board. For each procces, the stutent deletes the number x and replaces it with either $(2 x+4)$ or $(3 x+8)$ or $\left(x^{2}+5 x\right)$. Is this possible to make the number $\left(20^{17}+2016\right)$ on the board?
(Explain your answer)
This type of the question is well known but I am going to make a collection so, :blush:

