AoPS Community

CMO- Caucasus Mathematical Olympiad (Note: in this year, CMO and EGMO TST were the same tests) www.artofproblemsolving.com/community/c3034711
by parmenides51, YII.I., Tintarn

G1 Let $A B C$ be an isosceles triangle with $A C=B C$ and circumcircle k. The point D lies on the shorter arc of k over the chord $B C$ and is different from B and C. Let E denote the intersection of $C D$ and $A B$. Prove that the line through B and C is a tangent of the circumcircle of the triangle $B D E$.
(Karl Czakler)
A2 Let a, b and c be pairwise different natural numbers. Prove $\frac{a^{3}+b^{3}+c^{3}}{3} \geq a b c+a+b+c$.
When does equality holds?
(Karl Czakler)
C3 Suppose $n \geq 3$ is an integer. There are n grids on a circle. We put a stone in each grid. Find all positive integer n, such that we can perform the following operation $n-2$ times, and then there exists a grid with $n-1$ stones in it:

- Pick a grid A with at least one stone in it. And pick a positive integer $k \leq n-1$. Take all stones in the k-th grid after A in anticlockwise direction. And put then in the k-th grid after A in clockwise direction.

N4 Let $n \geq 1$ be a positive integer. We say that an integer k is a fan of n if $0 \leq k \leq n-1$ and there exist integers $x, y, z \in \mathbb{Z}$ such that

$$
\begin{aligned}
x^{2}+y^{2}+z^{2} & \equiv 0 \quad(\bmod n) ; \\
x y z & \equiv k \quad(\bmod n) .
\end{aligned}
$$

Let $f(n)$ be the number of fans of n. Determine $f(2020)$.

