AoPS Community

2017 Azerbaijan National Olympiad for grades 10-11

www.artofproblemsolving.com/community/c3035288
by Iora

A1 Solve the system of equation for $(x, y) \in \mathbb{R}$

$$
\left\{\begin{array}{c}
\sqrt{x^{2}+y^{2}}+\sqrt{(x-4)^{2}+(y-3)^{2}}=5 \\
3 x^{2}+4 x y=24
\end{array}\right.
$$

Explain your answer
C3 A student firstly wrote $x=3$ on the board. For each procces, the stutent deletes the number x and replaces it with either $(2 x+4)$ or $(3 x+8)$ or $\left(x^{2}+5 x\right)$. Is this possible to make the number $\left(20^{17}+2016\right)$ on the board?
(Explain your answer)
This type of the question is well known but I am going to make a collection so, :blush:
G4 In convex hexagon $A B C D E F$'s diagonals $A D, B E, C F$ intercepts each other at point O. If the area of triangles $A O B, C O D, E O F$ are 4,6 and 9 respectively, find the minimum possible value of area of hexagon $A B C D E F$

A5 $\quad a, b, c \in(0,1)$ and $x, y, z \in(0, \infty)$ reals satisfies the condition $a^{x}=b c, b^{y}=c a, c^{z}=a b$. Prove that

$$
\frac{1}{2+x}+\frac{1}{2+y}+\frac{1}{2+z} \leq \frac{3}{4}
$$

