Art of Problem Solving

AoPS Community

Sharygin Geometry Olympiad 2016

www.artofproblemsolving.com/community/c303820
by gavrilos, parmenides51, anantmudgal09, dcouchman, tarzanjunior, K.titu, Ghd

- \quad Grade 8
- Day 1

1 An altitude $A H$ of triangle $A B C$ bisects a median $B M$. Prove that the medians of triangle $A B M$ are sidelengths of a right-angled triangle.
by Yu.Blinkov
2 A circumcircle of triangle $A B C$ meets the sides $A D$ and $C D$ of a parallelogram $A B C D$ at points K and L respectively. Let M be the midpoint of arc $K L$ not containing B. Prove that $D M \perp A C$.
by E.Bakaev
$3 \quad$ A trapezoid $A B C D$ and a line ℓ perpendicular to its bases $A D$ and $B C$ are given. A point X moves along ℓ. The perpendiculars from A to $B X$ and from D to $C X$ meet at point Y. Find the locus of Y.
by D.Prokopenko
4 Is it possible to dissect a regular decagon along some of its diagonals so that the resulting parts can form two regular polygons?
by N.Beluhov

- Day 2

5 Three points are marked on the transparent sheet of paper. Prove that the sheet can be folded along some line in such a way that these points form an equilateral triangle.
by A.Khachaturyan
$6 \quad$ A triangle ABC with $\angle A=60^{\circ}$ is given. Points M and N on $A B$ and $A C$ respectively are such that the circumcenter of $A B C$ bisects segment $M N$. Find the ratio $A N: M B$.
by E.Bakaev

AoPS Community

2016 Sharygin Geometry Olympiad

7 Diagonals of a quadrilateral $A B C D$ are equal and meet at point O. The perpendicular bisectors to segments $A B$ and $C D$ meet at point P, and the perpendicular bisectors to $B C$ and $A D$ meet at point Q. Find angle $\angle P O Q$.
by A.Zaslavsky
8 A criminal is at point X, and three policemen at points A, B and C block him up, i.e. the point X lies inside the triangle $A B C$. Each evening one of the policemen is replaced in the following way. a new policeman takes the position equidistant from three former policemen, after this one of the former policemen goes away so that three remaining policemen block up the criminal too. May the policemen after some time occupy again the points A, B and C (it is known that at any moment X does not lie on a side of the triangle)?
by V.Protasov

- \quad Grade 9
- Day 1

1 The diagonals of a parallelogram $A B C D$ meet at point O. The tangent to the circumcircle of triangle $B O C$ at O meets ray $C B$ at point F. The circumcircle of triangle $F O D$ meets $B C$ for the second time at point G. Prove that $A G=A B$.

2 Let H be the orthocenter of an acute-angled triangle $A B C$. Point X_{A} lying on the tangent at H to the circumcircle of triangle $B H C$ is such that $A H=A X_{A}$ and $X_{A} \neq H$. Points X_{B}, X_{C} are defined similarly. Prove that the triangle $X_{A} X_{B} X_{C}$ and the orthotriangle of $A B C$ are similar.

3 Let O and I be the circumcenter and incenter of triangle $A B C$. The perpendicular from I to $O I$ meets $A B$ and the external bisector of angle C at points X and Y respectively. In what ratio does I divide the segment $X Y$?

4 One hundred and one beetles are crawling in the plane. Some of the beetles are friends. Every one hundred beetles can position themselves so that two of them are friends if and only if they are at unit distance from each other. Is it always true that all one hundred and one beetles can do the same?

- Day 2

5 The center of a circle ω_{2} lies on a circle ω_{1}. Tangents $X P$ and $X Q$ to ω_{2} from an arbitrary point X of ω_{1} (P and Q are the touching points) meet ω_{1} for the second time at points R and S. Prove that the line $P Q$ bisects the segment $R S$.

6 The sidelines $A B$ and $C D$ of a trapezoid meet at point P, and the diagonals of this trapezoid meet at point Q. Point M on the smallest base $B C$ is such that $A M=M D$. Prove that

AoPS Community

$$
\angle P M B=\angle Q M B
$$

7 From the altitudes of an acute-angled triangle, a triangle can be composed. Prove that a triangle can be composed from the bisectors of this triangle.

8 The diagonals of a cyclic quadrilateral meet at point M. A circle ω touches segments $M A$ and $M D$ at points P, Q respectively and touches the circumcircle of $A B C D$ at point X. Prove that X lies on the radical axis of circles $A C Q$ and $B D P$.
(Proposed by Ivan Frolov)

- \quad Grade 10

- Day 1

1 A line parallel to the side $B C$ of a triangle $A B C$ meets the sides $A B$ and $A C$ at points P and Q, respectively. A point M is chosen inside the triangle $A P Q$. The segments $M B$ and $M C$ meet the segment $P Q$ at points E and F, respectively. Let N be the second intersection point of the circumcircles of the triangles $P M F$ and $Q M E$. Prove that the points A, M, N are collinear.

2 Let I and I_{a} be the incenter and excenter (opposite vertex A) of a triangle $A B C$, respectively. Let A^{\prime} be the point on its circumcircle opposite to A, and A_{1} be the foot of the altitude from A. Prove that $\angle I A_{1} I_{a}=\angle I A^{\prime} I_{a}$.
(Proposed by Pavel Kozhevnikov)
3 Assume that the two triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ have the common incircle and the common circumcircle. Let a point P lie inside both the triangles. Prove that the sum of the distances from P to the sidelines of triangle $A B C$ is equal to the sum of distances from P to the sidelines of triangle $A^{\prime} B^{\prime} C^{\prime}$.

4 The Devil and the Man play a game. Initially, the Man pays some cash s to the Devil. Then he lists some 97 triples $\{i, j, k\}$ consisting of positive integers not exceeding 100. After that, the Devil draws some convex polygon $A_{1} A_{2} \ldots A_{100}$ with area 100 and pays to the Man, the sum of areas of all triangles $A_{i} A_{j} A_{k}$. Determine the maximal value of s which guarantees that the Man receives at least as much cash as he paid.
Proposed by Nikolai Beluhov, Bulgaria

- Day 2

5 Does there exist a convex polyhedron having equal number of edges and diagonals?
(A diagonal of a polyhedron is a segment through two vertices not lying on the same face)
$6 \quad$ A triangle $A B C$ is given. The point K is the base of the external bisector of angle A. The point M is the midpoint of the arc $A C$ of the circumcircle. The point N on the bisector of angle C is such that $A N \| B M$. Prove that the points M, N, K are collinear.
(Proposed by Ilya Bogdanov)
7 Restore a triangle by one of its vertices, the circumcenter and the Lemoine's point.
(The Lemoine's point is the intersection point of the reflections of the medians in the correspondent angle bisectors)

8 Let $A B C$ be a non-isosceles triangle, let $A A_{1}$ be its angle bisector and A_{2} be the touching point of the incircle with side $B C$. The points $B_{1}, B_{2}, C_{1}, C_{2}$ are defined similarly. Let O and I be the circumcenter and the incenter of triangle $A B C$. Prove that the radical center of the circumcircle of the triangles $A A_{1} A_{2}, B B_{1} B_{2}, C C_{1} C_{2}$ lies on the line $O I$.

- \quad First Round

- \quad Grade 8

P1 A trapezoid $A B C D$ with bases $A D$ and $B C$ is such that $A B=B D$. Let M be the midpoint of $D C$. Prove that $\angle M B C=\angle B C A$.

P2 Mark three nodes on a cellular paper so that the semiperimeter of the obtained triangle would be equal to the sum of its two smallest medians.
(Proposed by L.Emelyanov)
P3 Let $A H_{1}, B H_{2}$ be two altitudes of an acute-angled triangle $A B C, D$ be the projection of H_{1} to $A C, E$ be the projection of D to $A B, F$ be the common point of $E D$ and $A H_{1}$.
Prove that $H_{2} F \| B C$.
(Proposed by E.Diomidov)
P4 In quadrilateral $A B C D, \angle B=\angle D=90$ and $A C=B C+D C$. Point P of ray $B D$ is such that $B P=A D$. Prove that line $C P$ is parallel to the bisector of angle $A B D$.
(Proposed by A. Trigub)
P5 In quadrilateral $A B C D, A B=C D, M$ and K are the midpoints of $B C$ and $A D$.Prove that the angle between $M K$ and $A C$ is equal to the half-sum of angles $B A C$ and $D C A$
(Proposed by M.Volchkevich)

AoPS Community

P6 Let M be the midpoint of side $A C$ of triangle $A B C, M D$ and $M E$ be the perpendiculars from M to $A B$ and $B C$ respectively. Prove that the distance between the circumcenters of triangles $A B E$ and $B C D$ is equal to $A C / 4$
(Proposed by M.Volchkevich)

- \quad Grades 89

P7 Let all distances between the vertices of a convex n-gon $(n>3)$ be different.
a) A vertex is called uninteresting if the closest vertex is adjacent to it. What is the minimal possible number of uninteresting vertices (for a given n)?
b) A vertex is called unusual if the farthest vertex is adjacent to it. What is the maximal possible number of unusual vertices (for a given n)?
(Proposed by B.Frenkin)
P8 Let $A B C D E$ be an inscribed pentagon such that $\angle B+\angle E=\angle C+\angle D$. Prove that $\angle C A D<$ $\pi / 3<\angle A$.

(Proposed by B.Frenkin)

P9 Let $A B C$ be a right-angled triangle and $C H$ be the altitude from its right angle C. Points O_{1} and O_{2} are the incenters of triangles $A C H$ and $B C H$ respectively, P_{1} and P_{2} are the touching points of their incircles with $A C$ and $B C$. Prove that lines $O_{1} P_{1}$ and $O_{2} P_{2}$ meet on $A B$.

P10 Point X moves along side $A B$ of triangle $A B C$, and point Y moves along its circumcircle in such a way that line $X Y$ passes through the midpoint of arc $A B$. Find the locus of the circumcenters of triangles $I X Y$, where I is the incenter of $A B C$.

- Grades 810

P11 Restore a triangle $A B C$ by vertex B, the centroid and the common point of the symmedian from B with the circumcircle.

- Grades 910

P12 Let $B B_{1}$ be the symmedian of a nonisosceles acute-angled triangle $A B C$. Ray $B B_{1}$ meets the circumcircle of $A B C$ for the second time at point L. Let $A H_{A}, B H_{B}, C H_{C}$ be the altitudes of triangle $A B C$. Ray $B H_{B}$ meets the circumcircle of $A B C$ for the second time at point T. Prove that H_{A}, H_{C}, T, L are concyclic.

P13 L is a Line that intersect with the side $A B, B C, A C$ of triangle $A B C$ at F, D, E The line perpendicular to $B C$ from D intersect $A B, A C$ at A_{1}, A_{2} respectively

AoPS Community

2016 Sharygin Geometry Olympiad

Name $B_{1}, B_{2}, C_{1}, C_{2}$ similarly
Prove that the circumcenters of $A A_{1} A_{2}, B B_{1} B_{2}, C C_{1} C_{2}$ are collinear

- \quad Grade 911

P14 Let a triangle $A B C$ be given. Consider the circle touching its circumcircle at A and touching externally its incircle at some point A_{1}. Points B_{1} and C_{1} are defined similarly.
a) Prove that lines $A A_{1}, B B_{1}$ and $C C 1$ concur.
b) Let A_{2} be the touching point of the incircle with $B C$. Prove that lines $A A_{1}$ and $A A_{2}$ are symmetric about the bisector of angle $\angle A$.

P15 Let O, M, N be the circumcenter, the centroid and the Nagel point of a triangle. Prove that angle $M O N$ is right if and only if one of the triangles angles is equal to 60°.

P16 Let $B B_{1}$ and $C C_{1}$ be altitudes of triangle $A B C$. The tangents to the circumcircle of $A B_{1} C_{1}$ at B_{1} and C_{1} meet AB and $A C$ at points M and N respectively. Prove that the common point of circles $A M N$ and $A B_{1} C_{1}$ distinct from A lies on the Euler line of $A B C$.

P17 Let D be an arbitrary point on side $B C$ of triangle $A B C$. Circles ω_{1} and ω_{2} pass through A and D in such a way that $B A$ touches ω_{1} and $C A$ touches ω_{2}. Let $B X$ be the second tangent from B to ω_{1}, and $C Y$ be the second tangent from C to ω_{2}. Prove that the circumcircle of triangle $X D Y$ touches $B C$.

P18 Let $A B C$ be a triangle with $\angle C=90^{\circ}$, and K, L be the midpoints of the minor arcs AC and BC of its circumcircle. Segment $K L$ meets $A C$, at point N. Find angle $N I C$ where I is the incenter of $A B C$.

P19 Let $A B C D E F$ be a regular hexagon. Points P and Q on tangents to its circumcircle at A and D respectively are such that $P Q$ touches the minor arc $E F$ of this circle. Find the angle between $P B$ and $Q C$.

- Grades 1011

P20 The incircle ω of a triangle $A B C$ touches $B C, A C$ and $A B$ at points A_{0}, B_{0} and C_{0} respectively. The bisectors of angles B and C meet the perpendicular bisector to segment $A A_{0}$ at points Q and P respectively. Prove that $P C_{0}$ and $Q B_{0}$ meet on ω.

P21 The areas of rectangles P and Q are equal, but the diagonal of P is greater. Rectangle Q can be covered by two copies of P. Prove that P can be covered by two copies of Q.

P22 Let M_{A}, M_{B}, M_{C} be the midpoints of the sides $B C, C A, A B$ respectively of a non-isosceles triangle $A B C$. Points H_{A}, H_{B}, H_{C} lie on the corresponding sides, different from M_{A}, M_{B}, M_{C} such that $M_{A} H_{B}=M_{A} H_{C}, M_{B} H_{A}=M_{B} H_{C}$, and $M_{C} H_{A}=M_{C} H_{B}$. Prove that H_{A}, H_{B}, H_{C} are the feet of the corresponding altitudes.

P23 A sphere touches all edges of a tetrahedron. Let a, b, c and d be the segments of the tangents to the sphere from the vertices of the tetrahedron. Is it true that that some of these segments necessarily form a triangle?
(It is not obligatory to use all segments. The side of the triangle can be formed by two segments)

- \quad Grade 11

P24 A sphere is inscribed into a prism $A B C A^{\prime} B^{\prime} C^{\prime}$ and touches its lateral faces $B C C^{\prime} B^{\prime}, C A A^{\prime} C^{\prime}, A B B^{\prime} A^{\prime}$ at points A_{o}, B_{o}, C_{o} respectively. It is known that $\angle A_{o} B B^{\prime}=\angle B_{o} C C^{\prime}=\angle C_{o} A A^{\prime}$.
a) Find all possible values of these angles.
b) Prove that segments $A A_{o}, B B_{o}, C C_{o}$ concur.
c) Prove that the projections of the incenter to $A^{\prime} B^{\prime}, B^{\prime} C^{\prime}, C^{\prime} A^{\prime}$ are the vertices of a regular triangle.

