AoPS Community

Spain Mathematical Olympiad 2022

www.artofproblemsolving.com/community/c3039098
by Tintarn, Stuttgarden, VicKmath7

- \quad Day 1

1 The six-pointed star in the figure is regular: all interior angles of the small triangles are equal. Each of the thirteen marked points is assigned a color, green or red. Prove that there are always three points of the same color, which are the vertices of an equilateral triangle.

2 Let a, b, c, d be four positive real numbers. If they satisfy

$$
a+b+\frac{1}{a b}=c+d+\frac{1}{c d} \quad \text { and } \quad \frac{1}{a}+\frac{1}{b}+a b=\frac{1}{c}+\frac{1}{d}+c d
$$

then prove that at least two of the values a, b, c, d are equal.
3 Let $A B C$ be a triangle, with $A B<A C$, and let Γ be its circumcircle. Let D, E and F be the tangency points of the incircle with $B C, C A$ and $A B$ respectively. Let R be the point in $E F$ such that $D R$ is an altitude in the triangle $D E F$, and let S be the intersection of the external bisector of $\angle B A C$ with Γ. Prove that $A R$ and $S D$ intersect on Γ.

- Day 2
$4 \quad$ Let P be a point in the plane. Prove that it is possible to draw three rays with origin in P with the following property: for every circle with radius r containing P in its interior, if P_{1}, P_{2} and P_{3} are the intersection points of the three rays with the circle, then

$$
\left|P P_{1}\right|+\left|P P_{2}\right|+\left|P P_{3}\right| \leq 3 r .
$$

5 Given is a simple graph G with 2022 vertices, such that for any subset S of vertices (including the set of all vertices), there is a vertex v with $\operatorname{deg}_{S}(v) \leq 100$. Find $\chi(G)$ and the maximal number of edges G can have.

6 Find all triples (x, y, z) of positive integers, with $z>1$, satisfying simultaneously that x divides $y+1, \quad y$ divides $z-1, \quad z$ divides $x^{2}+1$.

