## AoPS Community

## 2022 Azerbaijan BMO TST

www.artofproblemsolving.com/community/c3040331
by Lukaluce, parmenides51

G1 Let $A B C$ be a triangle with $A B<A C<B C$. On the side $B C$ we consider points $D$ and $E$ such that $B A=B D$ and $C E=C A$. Let $K$ be the circumcenter of triangle $A D E$ and let $F, G$ be the points of intersection of the lines $A D, K C$ and $A E, K B$ respectively. Let $\omega_{1}$ be the circumcircle of triangle $K D E, \omega_{2}$ the circle with center $F$ and radius $F E$, and $\omega_{3}$ the circle with center $G$ and radius $G D$.
Prove that $\omega_{1}, \omega_{2}$, and $\omega_{3}$ pass through the same point and that this point of intersection lies on the line $A K$.

A2 Find all functions $f: R \rightarrow R$ with $f(x+y f(x+y))=y^{2}+f(x) f(y)$ for all $x, y \in R$.
C3 In an exotic country, the National Bank issues coins that can take any value in the interval $[0,1]$. Find the smallest constant $c>0$ such that the following holds, no matter the situation in that country:
[i]Any citizen of the exotic country that has a finite number of coins, with a total value of no more than 1000, can split those coins into 100 boxes, such that the total value inside each box is at most $c$.//i]

N4* A natural number $n$ is given. Determine all ( $n-1$ )-tuples of nonnegative integers $a_{1}, a_{2}, \ldots, a_{n-1}$ such that

$$
\left\lfloor\frac{m}{2^{n}-1}\right\rfloor+\left\lfloor\frac{2 m+a_{1}}{2^{n}-1}\right\rfloor+\left\lfloor\frac{2^{2} m+a_{2}}{2^{n}-1}\right\rfloor+\left\lfloor\frac{2^{3} m+a_{3}}{2^{n}-1}\right\rfloor+\ldots+\left\lfloor\frac{2^{n-1} m+a_{n-1}}{2^{n}-1}\right\rfloor=m
$$

holds for all $m \in \mathbb{Z}$.

