AoPS Community

Turkey EGMO TST 2015

www.artofproblemsolving.com/community/c304055
by Eray, mberke, TRcrescent27

Day 1 February 12th
$1 a$ is a real number. Find the all (x, y) real number pairs satisfy;

$$
\begin{aligned}
& y^{2}=x^{3}+(a-1) x^{2}+a^{2} x \\
& x^{2}=y^{3}+(a-1) y^{2}+a^{2} y
\end{aligned}
$$

2 Let D be the midpoint of the side $B C$ of a triangle $A B C$ and P be a point inside the $A B D$ satisfying $\angle P A D=90^{\circ}-\angle P B D=\angle C A D$. Prove that $\angle P Q B=\angle B A C$, where Q is the intersection point of the lines $P C$ and $A D$.

3 Given a 2015-tuple $\left(a_{1}, a_{2}, \ldots, a_{2015}\right)$ in each step we choose two indices $1 \leq k, l \leq 2015$ with a_{k} even and transform the 2015 -tuple into $\left(a_{1}, \ldots, \frac{a_{k}}{2}, \ldots, a_{l}+\frac{a_{k}}{2}, \ldots, a_{2015}\right)$. Prove that starting from $(1,2, \ldots, 2015)$ in finite number of steps one can reach any permutation of $(1,2, \ldots, 2015)$.

Day 2 February 13th

$4 \quad$ Find the all (m, n) integer pairs satisfying $m^{4}+2 n^{3}+1=m n^{3}+n$.
5 Let $a \geq b \geq 0$ be real numbers. Find the area of the region defined as;
$K=\left\{(x, y): x \geq y \geq 0\right.$ and $\forall n$ positive integers satisfy $\left.a^{n}+b^{n} \geq x^{n}+y^{n}\right\}$
in the cordinate plane.
6 In a party attended by 2015 guests among any 5 guests at most 6 handshakes had been exchanged. Determine the maximal possible total number of handshakes.

